Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Les processus de fragmentation sont des modèles aléatoires pour décrire l’évolution d’objets (particules, masses) sujets à des fragmentations successives au cours du temps. L’étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l’objet de nombreuses recherches. Ceci s’explique à la fois par de multiples motivations (le champs d’applications est vaste : biologie et génétique des populations, formation de planètes, polymérisation, aérosols, industrie minière, informatique, etc.) et par la mise en place de modèles mathématiques riches et liés à d’autres domaines bien développés en Probabilités, comme les marches aléatoires branchantes, les processus de Lévy et les arbres aléatoires. L’objet de ce mini-cours est de présenter les processus de fragmentation auto-similaires, tels qu’introduits par Bertoin au début des années 2000s. Ce sont des processus markoviens, dont la dynamique est caractérisée par une propriété de branchement (différents objets évoluent indépendamment) et une propriété d’auto-similarité (un objet se fragmente à un taux proportionnel à une certaine puissance fixée de sa masse). Nous discuterons la construction de ces processus (qui incluent des modèles avec fragmentations spontanées, plus délicats à construire) et ferons un tour d’horizon de leurs principales propriétés. Les processus de fragmentation sont des modèles aléatoires pour décrire l’évolution d’objets (particules, masses) sujets à des fragmentations successives au cours du temps. L’étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l’objet de nombreuses recherches. Ceci s’explique à la fois par de multiples motivations (le champs d’applications est vaste : biologie et génétique des populations, formation de planètes, ...

60G18 ; 60J25 ; 60J85

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Les processus de fragmentation sont des modèles aléatoires pour décrire l’évolution d’objets (particules, masses) sujets à des fragmentations successives au cours du temps. L’étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l’objet de nombreuses recherches. Ceci s’explique à la fois par de multiples motivations (le champs d’applications est vaste : biologie et génétique des populations, formation de planètes, polymérisation, aérosols, industrie minière, informatique, etc.) et par la mise en place de modèles mathématiques riches et liés à d’autres domaines bien développés en Probabilités, comme les marches aléatoires branchantes, les processus de Lévy et les arbres aléatoires. L’objet de ce mini-cours est de présenter les processus de fragmentation auto-similaires, tels qu’introduits par Bertoin au début des années 2000s. Ce sont des processus markoviens, dont la dynamique est caractérisée par une propriété de branchement (différents objets évoluent indépendamment) et une propriété d’auto-similarité (un objet se fragmente à un taux proportionnel à une certaine puissance fixée de sa masse). Nous discuterons la construction de ces processus (qui incluent des modèles avec fragmentations spontanées, plus délicats à construire) et ferons un tour d’horizon de leurs principales propriétés. Les processus de fragmentation sont des modèles aléatoires pour décrire l’évolution d’objets (particules, masses) sujets à des fragmentations successives au cours du temps. L’étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l’objet de nombreuses recherches. Ceci s’explique à la fois par de multiples motivations (le champs d’applications est vaste : biologie et génétique des populations, formation de planètes, ...

60G18 ; 60J25 ; 60J85

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In this talk I will present a stochastic model for the excitability of a neuron in a network. The neuron described by an Hodgkin-Huxley type model receives from the network a random input which is a perturbation of a periodic deterministic signal. For such a model we study ergodicity properties. Then, we prove limit theorems in order to be able to estimate characteristics of the sequence of spiking times. This talk is based on a joint work with R. Hoepfner (Univ. Mainz) and E. Loecherbach (Univ. Cergy-Pontoise).

Hodgkin-Huxley model - ergodicity - limit theorems - estimation
In this talk I will present a stochastic model for the excitability of a neuron in a network. The neuron described by an Hodgkin-Huxley type model receives from the network a random input which is a perturbation of a periodic deterministic signal. For such a model we study ergodicity properties. Then, we prove limit theorems in order to be able to estimate characteristics of the sequence of spiking times. This talk is based on a joint work with ...

60J60 ; 60J25 ; 60H07

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We represent Hawkes process and their Volterra long term limits, which have recently been used as rough variance processes, as functionals of infinite dimensional affine Markov processes. The representations lead to several new views on affine Volterra processes considered by Abi-Jaber, Larsson and Pulido. We also discuss possible extensions to rough covariance modeling via Volterra Wishart processes.
The talk is based on joint work with Josef Teichmann.
We represent Hawkes process and their Volterra long term limits, which have recently been used as rough variance processes, as functionals of infinite dimensional affine Markov processes. The representations lead to several new views on affine Volterra processes considered by Abi-Jaber, Larsson and Pulido. We also discuss possible extensions to rough covariance modeling via Volterra Wishart processes.
The talk is based on joint work with Josef ...

60J25 ; 91B70

Filtrer

Type
Domaine
Codes MSC

Z