Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The freezing in the title refers to a property of point processes: let $\left ( X_i \right )_{i\geq 1}$ denote a point process which is locally finite and has finite maximum. For a function f continuous of compact support, define $Z_f=f\left ( X_1 \right )+f\left ( X_2 \right )+....$ We say that freezing occurs if the Laplace transform of $Z_f$ depends on f only through a shift. I will discuss this notion and its equivalence with other properties of the point process. In particular, such freezing occurs for the extremal process in branching random walks and in certain versions of the (discrete) two dimensional GFF.
Joint work with Eliran Subag
The freezing in the title refers to a property of point processes: let $\left ( X_i \right )_{i\geq 1}$ denote a point process which is locally finite and has finite maximum. For a function f continuous of compact support, define $Z_f=f\left ( X_1 \right )+f\left ( X_2 \right )+....$ We say that freezing occurs if the Laplace transform of $Z_f$ depends on f only through a shift. I will discuss this notion and its equivalence with other ...

60G55 ; 60J65 ; 60J80

Filtrer

Domaine
Codes MSC
Audience

Z
div class="contents">

Les Interviews du CIRM

Forum mathématiques vivantes

Documentation mathématique

Services numériques pour les mathématiques

  • |
  • liste des Conferenciers
  • |
  • Domaines
  • |
  • Recherche
  • G

    F Nous contacter


    0

    Documents  60J65 | enregistrements trouvés : 1

    O
       

    -A +A

    P Q