Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Les processus de fragmentation sont des modèles aléatoires pour décrire l’évolution d’objets (particules, masses) sujets à des fragmentations successives au cours du temps. L’étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l’objet de nombreuses recherches. Ceci s’explique à la fois par de multiples motivations (le champs d’applications est vaste : biologie et génétique des populations, formation de planètes, polymérisation, aérosols, industrie minière, informatique, etc.) et par la mise en place de modèles mathématiques riches et liés à d’autres domaines bien développés en Probabilités, comme les marches aléatoires branchantes, les processus de Lévy et les arbres aléatoires. L’objet de ce mini-cours est de présenter les processus de fragmentation auto-similaires, tels qu’introduits par Bertoin au début des années 2000s. Ce sont des processus markoviens, dont la dynamique est caractérisée par une propriété de branchement (différents objets évoluent indépendamment) et une propriété d’auto-similarité (un objet se fragmente à un taux proportionnel à une certaine puissance fixée de sa masse). Nous discuterons la construction de ces processus (qui incluent des modèles avec fragmentations spontanées, plus délicats à construire) et ferons un tour d’horizon de leurs principales propriétés. Les processus de fragmentation sont des modèles aléatoires pour décrire l’évolution d’objets (particules, masses) sujets à des fragmentations successives au cours du temps. L’étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l’objet de nombreuses recherches. Ceci s’explique à la fois par de multiples motivations (le champs d’applications est vaste : biologie et génétique des populations, formation de planètes, ...

60G18 ; 60J25 ; 60J85

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

A popular line of research in evolutionary biology is to use time-calibrated phylogenies in order to infer the underlying diversification process. This involves the use of stochastic models of ultrametric trees, i.e., trees whose tips lie at the same distance from the root. We recast some well-known models of ultrametric trees (infinite regular trees, exchangeable coalescents, coalescent point processes) in the framework of so-called comb metric spaces and give some applications of coalescent point processes to the phylogeny of bird species.

However, these models of diversification assume that species are exchangeable particles, and this always leads to the same (Yule) tree shape in distribution. Here, we propose a non-exchangeable, individual-based, point mutation model of diversification, where interspecific pairwise competition is only felt from the part of individuals belonging to younger species. As the initial (meta)population size grows to infinity, the properly rescaled dynamics of species lineages converge to a one-parameter family of coalescent trees interpolating between the caterpillar tree and the Kingman coalescent.

Keywords: ultrametric tree, inference, phylogenetic tree, phylogeny, birth-death process, population dynamics, evolution
A popular line of research in evolutionary biology is to use time-calibrated phylogenies in order to infer the underlying diversification process. This involves the use of stochastic models of ultrametric trees, i.e., trees whose tips lie at the same distance from the root. We recast some well-known models of ultrametric trees (infinite regular trees, exchangeable coalescents, coalescent point processes) in the framework of so-called comb metric ...

60J80 ; 60J85 ; 92D15 ; 92D25 ; 54E45 ; 54E70

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Bootstrap percolation on Erdos-Renyi graphs
Angel, Omer (Auteur de la Conférence) | CIRM (Editeur )

We consider bootstrap percolation on the Erdos-Renyi graph: given an initial infected set, a vertex becomes infected if it has at least $r$ infected neighbours. The graph is susceptible if there exists an initial set of size $r$ that infects the whole graph. We identify the critical threshold for susceptibility. We also analyse Bollobas's related graph-bootstrap percolation model.
Joint with Brett Kolesnik.

05C80 ; 60K35 ; 60J85 ; 82B26 ; 82B43

Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Les processus de fragmentation sont des modèles aléatoires pour décrire l’évolution d’objets (particules, masses) sujets à des fragmentations successives au cours du temps. L’étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l’objet de nombreuses recherches. Ceci s’explique à la fois par de multiples motivations (le champs d’applications est vaste : biologie et génétique des populations, formation de planètes, polymérisation, aérosols, industrie minière, informatique, etc.) et par la mise en place de modèles mathématiques riches et liés à d’autres domaines bien développés en Probabilités, comme les marches aléatoires branchantes, les processus de Lévy et les arbres aléatoires. L’objet de ce mini-cours est de présenter les processus de fragmentation auto-similaires, tels qu’introduits par Bertoin au début des années 2000s. Ce sont des processus markoviens, dont la dynamique est caractérisée par une propriété de branchement (différents objets évoluent indépendamment) et une propriété d’auto-similarité (un objet se fragmente à un taux proportionnel à une certaine puissance fixée de sa masse). Nous discuterons la construction de ces processus (qui incluent des modèles avec fragmentations spontanées, plus délicats à construire) et ferons un tour d’horizon de leurs principales propriétés. Les processus de fragmentation sont des modèles aléatoires pour décrire l’évolution d’objets (particules, masses) sujets à des fragmentations successives au cours du temps. L’étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l’objet de nombreuses recherches. Ceci s’explique à la fois par de multiples motivations (le champs d’applications est vaste : biologie et génétique des populations, formation de planètes, ...

60G18 ; 60J25 ; 60J85

Filtrer

Type
Domaine
Codes MSC

Z