F Nous contacter


0

Documents  62H12 | enregistrements trouvés : 4

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

We present a novel methodology for causal inference based on an invariance principle. It exploits the advantage of heterogeneity in larger datasets, arising from different experimental conditions (i.e. an aspect of "Big Data"). Despite fundamental identifiability issues, the method comes with statistical confidence statements leading to more reliable results than alternative procedures based on graphical modeling. We also discuss applications in biology, in particular for large-scale gene knock-down experiments in yeast where computational and statistical methods have an interesting potential for prediction and prioritization of new experimental interventions. We present a novel methodology for causal inference based on an invariance principle. It exploits the advantage of heterogeneity in larger datasets, arising from different experimental conditions (i.e. an aspect of "Big Data"). Despite fundamental identifiability issues, the method comes with statistical confidence statements leading to more reliable results than alternative procedures based on graphical modeling. We also discuss applications in ...

62H12 ; 62Fxx ; 62Pxx

This work presents the impact of a class of transformations of copulas in their upper and lower multivariate tail dependence coefficients. In particular we focus on multivariate Archimedean copulas. In the first part, we calculate multivariate transformed tail dependence coefficients when the generator of the considered transformed copula exhibits some regular variation properties, and we investigate the behavior of these coefficients in cases that are close to tail independence. We obtain new results under specific conditions involving regularly varying hazard rates of components of the transformation. These results are also valid for non-transformed Archimedean copulas. In the second part we deal with a class of particular hyperbolic transformations. We show the utility of using transformed Archimedean copulas, as they permit to build Archimedean generators exhibiting any chosen couple of lower and upper tail dependence coefficients. This work presents the impact of a class of transformations of copulas in their upper and lower multivariate tail dependence coefficients. In particular we focus on multivariate Archimedean copulas. In the first part, we calculate multivariate transformed tail dependence coefficients when the generator of the considered transformed copula exhibits some regular variation properties, and we investigate the behavior of these coefficients in ...

62H05 ; 62G05 ; 62G20 ; 62H12

Bayesian posterior distributions can be numerically intractable, even by the means of Markov Chain Monte Carlo methods. Bayesian variational methods can then be used to compute directly (and fast) a deterministic approximation of these posterior distributions. In this course, I describe the principles of the variational methods and their application in Bayesian inference, review main theoretical results and discuss their use on examples.

62F15 ; 62H12 ; 49J40

In recent years rank aggregation has received significant attention from the machine learning community. The goal of such a problem is to combine the (partially revealed) preferences over objects of a large population into a single, relatively consistent ordering of those objects. However, in many cases, we might not want a single ranking and instead opt for individual rankings. We study a version of the problem known as collaborative ranking. In this problem we assume that individual users provide us with pairwise preferences (for example purchasing one item over another). From those preferences we wish to obtain rankings on items that the users have not had an opportunity to explore. The results here have a very interesting connection to the standard matrix completion problem. We provide a theoretical justification for a nuclear norm regularized optimization procedure, and provide high-dimensional scaling results that show how the error in estimating user preferences behaves as the number of observations increase.

rank aggregation - nuclear norm - rank centrality - convex optimization - regularized $M$-estimation - matrix completion - collaborative filtering
In recent years rank aggregation has received significant attention from the machine learning community. The goal of such a problem is to combine the (partially revealed) preferences over objects of a large population into a single, relatively consistent ordering of those objects. However, in many cases, we might not want a single ranking and instead opt for individual rankings. We study a version of the problem known as collaborative ranking. ...

62H12 ; 68T05

Nuage de mots clefs ici

Z