F Nous contacter


0

Documents  62H35 | enregistrements trouvés : 1

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine learning.
imaging - image processing - sparsity - convex optimization - inverse problem - super-resolution
In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine ...

62H35 ; 65D18 ; 94A08 ; 68U10 ; 90C31 ; 80M50 ; 47N10

Nuage de mots clefs ici

Z