F Nous contacter


0

Documents  65K10 | enregistrements trouvés : 5

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

The alternating direction method of multipliers (ADMM) is an optimization tool of choice for several imaging inverse problems, namely due its flexibility, modularity, and efficiency. In this talk, I will begin by reviewing our earlier work on using ADMM to deal with classical problems such as deconvolution, inpainting, compressive imaging, and how we have exploited its flexibility to deal with different noise models, including Gaussian, Poissonian, and multiplicative, and with several types of regularizers (TV, frame-based analysis, synthesis, or combinations thereof). I will then describe more recent work on using ADMM for other problems, namely blind deconvolution and image segmentation, as well as very recent work where ADMM is used with plug-in learned denoisers to achieve state-of-the-art results in class-specific image deconvolution. Finally, on the theoretical front, I will describe very recent work on tackling the infamous problem of how to adjust the penalty parameter of ADMM. The alternating direction method of multipliers (ADMM) is an optimization tool of choice for several imaging inverse problems, namely due its flexibility, modularity, and efficiency. In this talk, I will begin by reviewing our earlier work on using ADMM to deal with classical problems such as deconvolution, inpainting, compressive imaging, and how we have exploited its flexibility to deal with different noise models, including Gaussian, ...

65J22 ; 65K10 ; 65T60 ; 94A08

Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and computing, and the potential applications to economics and social sciences are numerous.
In the limit when $n \to +\infty$, a given agent feels the presence of the others through the statistical distribution of the states. Assuming that the perturbations of a single agent's strategy does not influence the statistical states distribution, the latter acts as a parameter in the control problem to be solved by each agent. When the dynamics of the agents are independent stochastic processes, MFGs naturally lead to a coupled system of two partial differential equations (PDEs for short), a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation.
The latter system of PDEs has closed form solutions in very few cases only. Therefore, numerical simulation are crucial in order to address applications. The present mini-course will be devoted to numerical methods that can be used to approximate the systems of PDEs.
The numerical schemes that will be presented rely basically on monotone approximations of the Hamiltonian and on a suitable weak formulation of the Fokker-Planck equation.
These schemes have several important features:

- The discrete problem has the same structure as the continous one, so existence, energy estimates, and possibly uniqueness can be obtained with the same kind of arguments

- Monotonicity guarantees the stability of the scheme: it is robust in the deterministic limit

- convergence to classical or weak solutions can be proved

Finally, there are particular cases named variational MFGS in which the system of PDEs can be seen as the optimality conditions of some optimal control problem driven by a PDE. In such cases, augmented Lagrangian methods can be used for solving the discrete nonlinear system. The mini-course will be orgamized as follows

1. Introduction to the system of PDEs and its interpretation. Uniqueness of classical solutions.

2. Monotone finite difference schemes

3. Examples of applications

4. Variational MFG and related algorithms for solving the discrete system of nonlinear equations
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and ...

49K20 ; 49N70 ; 35K40 ; 35K55 ; 35Q84 ; 65K10 ; 65M06 ; 65M12 ; 91A23 ; 91A15

A front data assimilation system named FIREFLY has been developed at CERFACS in collaboration with the University of Maryland to better estimate the environmental conditions (biomass properties, near-surface wind). We discuss the sequential application of the ensemble Kalman filter (EnKF) in FIREFLY for correcting in a spatially-distributed way, input parameters in order to better track the fire front position. In particular, using a polynomial chaos surrogate to mimic the wildfire spread model in the EnKF algorithm was found in collaboration with LIMSI to be a promising strategy to reduce the computational cost of FIREFLY.
We also discuss the way we represent the distance between simulated and observed fronts. In the CEMRACS project, a new discrepancy operator will be introduced to better represent the match (or mismatch) between simulated fronts and mid-infrared observations in collaboration with INRIA. This front level-set data assimilation derived from image processing and designed for electrophysiology will be extended to wildfire spread monitoring.
A front data assimilation system named FIREFLY has been developed at CERFACS in collaboration with the University of Maryland to better estimate the environmental conditions (biomass properties, near-surface wind). We discuss the sequential application of the ensemble Kalman filter (EnKF) in FIREFLY for correcting in a spatially-distributed way, input parameters in order to better track the fire front position. In particular, using a polynomial ...

65K10 ; 80A25

Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and computing, and the potential applications to economics and social sciences are numerous.
In the limit when $n \to +\infty$, a given agent feels the presence of the others through the statistical distribution of the states. Assuming that the perturbations of a single agent's strategy does not influence the statistical states distribution, the latter acts as a parameter in the control problem to be solved by each agent. When the dynamics of the agents are independent stochastic processes, MFGs naturally lead to a coupled system of two partial differential equations (PDEs for short), a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation.
The latter system of PDEs has closed form solutions in very few cases only. Therefore, numerical simulation are crucial in order to address applications. The present mini-course will be devoted to numerical methods that can be used to approximate the systems of PDEs.
The numerical schemes that will be presented rely basically on monotone approximations of the Hamiltonian and on a suitable weak formulation of the Fokker-Planck equation.
These schemes have several important features:

- The discrete problem has the same structure as the continous one, so existence, energy estimates, and possibly uniqueness can be obtained with the same kind of arguments

- Monotonicity guarantees the stability of the scheme: it is robust in the deterministic limit

- convergence to classical or weak solutions can be proved

Finally, there are particular cases named variational MFGS in which the system of PDEs can be seen as the optimality conditions of some optimal control problem driven by a PDE. In such cases, augmented Lagrangian methods can be used for solving the discrete nonlinear system. The mini-course will be orgamized as follows

1. Introduction to the system of PDEs and its interpretation. Uniqueness of classical solutions.

2. Monotone finite difference schemes

3. Examples of applications

4. Variational MFG and related algorithms for solving the discrete system of nonlinear equations
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and ...

49K20 ; 49N70 ; 35K40 ; 35K55 ; 35Q84 ; 65K10 ; 65M06 ; 65M12 ; 91A23 ; 91A15

Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and computing, and the potential applications to economics and social sciences are numerous.
In the limit when $n \to +\infty$, a given agent feels the presence of the others through the statistical distribution of the states. Assuming that the perturbations of a single agent's strategy does not influence the statistical states distribution, the latter acts as a parameter in the control problem to be solved by each agent. When the dynamics of the agents are independent stochastic processes, MFGs naturally lead to a coupled system of two partial differential equations (PDEs for short), a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation.
The latter system of PDEs has closed form solutions in very few cases only. Therefore, numerical simulation are crucial in order to address applications. The present mini-course will be devoted to numerical methods that can be used to approximate the systems of PDEs.
The numerical schemes that will be presented rely basically on monotone approximations of the Hamiltonian and on a suitable weak formulation of the Fokker-Planck equation.
These schemes have several important features:

- The discrete problem has the same structure as the continous one, so existence, energy estimates, and possibly uniqueness can be obtained with the same kind of arguments

- Monotonicity guarantees the stability of the scheme: it is robust in the deterministic limit

- convergence to classical or weak solutions can be proved

Finally, there are particular cases named variational MFGS in which the system of PDEs can be seen as the optimality conditions of some optimal control problem driven by a PDE. In such cases, augmented Lagrangian methods can be used for solving the discrete nonlinear system. The mini-course will be orgamized as follows

1. Introduction to the system of PDEs and its interpretation. Uniqueness of classical solutions.

2. Monotone finite difference schemes

3. Examples of applications

4. Variational MFG and related algorithms for solving the discrete system of nonlinear equations
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and ...

49K20 ; 49N70 ; 35K40 ; 35K55 ; 35Q84 ; 65K10 ; 65M06 ; 65M12 ; 91A23 ; 91A15

Nuage de mots clefs ici

Z