Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Wrapping in exact real arithmetic
Müller, Norbert (Auteur de la Conférence) | CIRM (Editeur )

A serious problem common to all interval algorithms is that they suffer from wrapping effects, i.e. unnecessary growth of approximations during a computation. This is essentially connected to functional dependencies inside vectors of data computed from the same inputs. Reducing these effects is an important issue in interval arithmetic, where the most successful approach uses Taylor models.
In TTE Taylor models have not been considered explicitly, as they use would not change the induced computability, already established using ordinary interval computations. However for the viewpoint of efficiency, they lead to significant improvements.
In the talk we report on recent improvements on the iRRAM software for exact real arithmetic (ERA) based on Taylor models. The techniques discussed should also easily be applicable to other software for exact real computations as long as they also are based on interval arithmetic.
As instructive examples we consider the one-dimensional logistic map and a few further discrete dynamical systems of higher dimensions
Joint work with Franz Brauße, Trier, and Margarita Korovina, Novosibirsk.
A serious problem common to all interval algorithms is that they suffer from wrapping effects, i.e. unnecessary growth of approximations during a computation. This is essentially connected to functional dependencies inside vectors of data computed from the same inputs. Reducing these effects is an important issue in interval arithmetic, where the most successful approach uses Taylor models.
In TTE Taylor models have not been considered ...

68Q25 ; 03D60 ; 65Y15

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

I will review (some of) the HPC solution strategies developed in Feel++. We present our advances in developing a language specific to partial differential equations embedded in C++. We have been developing the Feel++ framework (Finite Element method Embedded Language in C++) to the point where it allows to use a very wide range of Galerkin methods and advanced numerical methods such as domain decomposition methods including mortar and three fields methods, fictitious domain methods or certified reduced basis. We shall present an overview of the various ingredients as well as some illustrations. The ingredients include a very expressive embedded language, seamless interpolation, mesh adaption, seamless parallelisation. As to the illustrations, they exercise the versatility of the framework either by allowing the development and/or numerical verification of (new) mathematical methods or the development of large multi-physics applications - e.g. fluid-structure interaction using either an Arbitrary Lagrangian Eulerian formulation or a levelset based one; high field magnets modeling which involves electro-thermal, magnetostatics, mechanical and thermo-hydraulics model; ... - The range of users span from mechanical engineers in industry, physicists in complex fluids, computer scientists in biomedical applications to applied mathematicians thanks to the shared common mathematical embedded language hiding linear algebra and computer science complexities. I will review (some of) the HPC solution strategies developed in Feel++. We present our advances in developing a language specific to partial differential equations embedded in C++. We have been developing the Feel++ framework (Finite Element method Embedded Language in C++) to the point where it allows to use a very wide range of Galerkin methods and advanced numerical methods such as domain decomposition methods including mortar and three ...

65N30 ; 65N55 ; 65Y05 ; 65Y15

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Filtrer

Type
Domaine
Codes MSC

Z