F Nous contacter


0

Documents  91B30 | enregistrements trouvés : 4

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Multi angle  Project evaluation under uncertainty
Zubelli, Jorge P. (Auteur de la Conférence) | CIRM (Editeur )

Industrial strategic decisions have evolved tremendously in the last decades towards a higher degree of quantitative analysis. Such decisions require taking into account a large number of uncertain variables and volatile scenarios, much like financial market investments. Furthermore, they can be evaluated by comparing to portfolios of investments in financial assets such as in stocks, derivatives and commodity futures. This revolution led to the development of a new field of managerial science known as Real Options.
The use of Real Option techniques incorporates also the value of flexibility and gives a broader view of many business decisions that brings in techniques from quantitative finance and risk management. Such techniques are now part of the decision making process of many corporations and require a substantial amount of mathematical background. Yet, there has been substantial debate concerning the use of risk neutral pricing and hedging arguments to the context of project evaluation. We discuss some alternatives to risk neutral pricing that could be suitable to evaluation of projects in a realistic context with special attention to projects dependent on commodities and non-hedgeable uncertainties. More precisely, we make use of a variant of the hedged Monte-Carlo method of Potters, Bouchaud and Sestovic to tackle strategic decisions. Furthermore, we extend this to different investor risk profiles. This is joint work with Edgardo Brigatti, Felipe Macias, and Max O. de Souza.
If time allows we shall also discuss the situation when the historical data for the project evaluation is very limited and we can make use of certain symmetries of the problem to perform (with good estimates) a nonintrusive stratified resampling of the data. This is joint work with E. Gobet and G. Liu.
Industrial strategic decisions have evolved tremendously in the last decades towards a higher degree of quantitative analysis. Such decisions require taking into account a large number of uncertain variables and volatile scenarios, much like financial market investments. Furthermore, they can be evaluated by comparing to portfolios of investments in financial assets such as in stocks, derivatives and commodity futures. This revolution led to the ...

91B26 ; 91B06 ; 91B30 ; 91B24

We investigate a method based on risk minimization to hedge observable but non-tradable source of risk on financial or energy markets. The optimal portfolio strategy is obtained by minimizing dynamically the Conditional Value-at-Risk (CVaR) using three main tools: a stochastic approximation algorithm, optimal quantization and variance reduction techniques (importance sampling (IS) and linear control variable (LCV)) as the quantities of interest are naturally related to rare events. We illustrate our approach by considering several portfolios in connection with energy markets.

Keywords : VaR, CVaR, Stochastic Approximation, Robbins-Monro algorithm, Quantification
We investigate a method based on risk minimization to hedge observable but non-tradable source of risk on financial or energy markets. The optimal portfolio strategy is obtained by minimizing dynamically the Conditional Value-at-Risk (CVaR) using three main tools: a stochastic approximation algorithm, optimal quantization and variance reduction techniques (importance sampling (IS) and linear control variable (LCV)) as the quantities of interest ...

91G70 ; 91B30 ; 62L20

This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n variables or through a doubly mixed multinomial distribution. Several other properties including correlation measures are derived. Three processes in insurance theory are discussed for which the claim interarrival periods form a Schur-constant model.
This is a joint work with A. Castaner, M.M. Claramunt and S. Loisel.

Keywords: Schur-constant property; survival function; multiple monotonicity; mixed multinomial distribution; insurance risk theory
This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n variables or through a doubly mixed multinomial distribution. Several other properties including correlation measures are derived. Three processes in ...

60E05 ; 91B30

We study a renewal risk model in which the surplus process of the insurance company is modeled by a compound fractional Poisson process. We establish the long-range dependence property of this non-stationary process. Some results for the ruin probabilities are presented in various assumptions on the distribution of the claim sizes.

60G22 ; 60G55 ; 91B30 ; 60K05 ; 33E12

Nuage de mots clefs ici

Z