Déposez votre fichier ici pour le déplacer vers cet enregistrement.

##
Post-edited
On the space highway to Lagrange points!

Trélat, Emmanuel (Auteur de la Conférence) | CIRM (Editeur )

Everything is under control: mathematics optimize everyday life.

In an empirical way we are able to do many things with more or less efficiency or success. When one wants to achieve a parallel parking, consequences may sometimes be ridiculous... But when one wants to launch a rocket or plan interplanetary missions, better is to be sure of what we do.

Control theory is a branch of mathematics that allows to control, optimize and guide systems on which one can act by means of a control, like for example a car, a robot, a space shuttle, a chemical reaction or in more general a process that one aims at steering to some desired target state.

Emmanuel Trélat will overview the range of applications of that theory through several examples, sometimes funny, but also historical. He will show you that the study of simple cases of our everyday life, far from insignificant, allow to approach problems like the orbit transfer or interplanetary mission design.

control theory - optimal control - stabilization - optimization - aerospace - Lagrange points - dynamical systems - mission design Everything is under control: mathematics optimize everyday life.

In an empirical way we are able to do many things with more or less efficiency or success. When one wants to achieve a parallel parking, consequences may sometimes be ridiculous... But when one wants to launch a rocket or plan interplanetary missions, better is to be sure of what we do.

Control theory is a branch of mathematics that allows to control, optimize and guide systems on ...

In an empirical way we are able to do many things with more or less efficiency or success. When one wants to achieve a parallel parking, consequences may sometimes be ridiculous... But when one wants to launch a rocket or plan interplanetary missions, better is to be sure of what we do.

Control theory is a branch of mathematics that allows to control, optimize and guide systems on which one can act by means of a control, like for example a car, a robot, a space shuttle, a chemical reaction or in more general a process that one aims at steering to some desired target state.

Emmanuel Trélat will overview the range of applications of that theory through several examples, sometimes funny, but also historical. He will show you that the study of simple cases of our everyday life, far from insignificant, allow to approach problems like the orbit transfer or interplanetary mission design.

control theory - optimal control - stabilization - optimization - aerospace - Lagrange points - dynamical systems - mission design Everything is under control: mathematics optimize everyday life.

In an empirical way we are able to do many things with more or less efficiency or success. When one wants to achieve a parallel parking, consequences may sometimes be ridiculous... But when one wants to launch a rocket or plan interplanetary missions, better is to be sure of what we do.

Control theory is a branch of mathematics that allows to control, optimize and guide systems on ...

49J15 ; 93B40 ; 93B27 ; 93B50 ; 65H20 ; 90C31 ; 37N05 ; 37N35