F Nous contacter


0

Documents  93C15 | enregistrements trouvés : 4

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Mathematical modeling and numerical mathematics of today is very much Lagrangian and modern automated modeling techniques lead to differential-algebraic systems. The optimal control for such systems in general cannot be obtained using the classical Euler-Lagrange approach or the maximum principle, but it is shown how this approach can be extended.
differential-algebraic equations - optimal control - Lagrangian subspace - necessary optimality conditions - Hamiltonian system - symplectic flow
Mathematical modeling and numerical mathematics of today is very much Lagrangian and modern automated modeling techniques lead to differential-algebraic systems. The optimal control for such systems in general cannot be obtained using the classical Euler-Lagrange approach or the maximum principle, but it is shown how this approach can be extended.
differential-algebraic equations - optimal control - Lagrangian subspace - necessary optimality ...

93C05 ; 93C15 ; 49K15 ; 34H05

This talk concerns the concept of dissipativity in the sense of Willems for nonautonomous linear-quadratic (LQ) control systems. A nonautonomous system of Hamiltonian ODEs can be associated with such an LQ system, and the analysis of the corresponding symplectic dynamics provides valuable information on the dissipativity properties. The presence of exponential dichotomy, the occurrence of weak disconjugacy, and the existence of nonnegative solutions of the Riccati equation provided by the Hamiltonian system are closely related to the presence of (normal or strict) dissipativity and to the definition of the (normal or strong) storage functions.
This is a joint work with: Roberta Fabbri, Russell Johnson, Sylvia Novo and Rafael Obaya.
This talk concerns the concept of dissipativity in the sense of Willems for nonautonomous linear-quadratic (LQ) control systems. A nonautonomous system of Hamiltonian ODEs can be associated with such an LQ system, and the analysis of the corresponding symplectic dynamics provides valuable information on the dissipativity properties. The presence of exponential dichotomy, the occurrence of weak disconjugacy, and the existence of nonnegative ...

37B55 ; 49N10 ; 93C15

Necessary conditions for infinite horizon optimal controls problem can be obtained by the alternative theorem. This theorem requires that the range of a shift operator on a functional space is closed. It will be shown that this is the case if the dynamics of the problem is hyperbolic but may fail to be so if it is not.

34H05 ; 49K15 ; 93C15

Multi angle  Geometric control and dynamics
Rifford, Ludovic (Auteur de la Conférence) | CIRM (Editeur )

The geometric control theory is concerned with the study of control systems in finite dimension, that is dynamical systems on which one can act by a control. After a brief introduction to controllability properties of control systems, we will see how basic techniques from control theory can be used to obtain for example generic properties in Hamiltonians dynamics.

34H05 ; 93C15 ; 93B27

Nuage de mots clefs ici

Z