F Nous contacter


0

Documents  93E20 | enregistrements trouvés : 3

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

We introduce a new strategy for the solution of Mean Field Games in the presence of major and minor players. This approach is based on a formulation of the fixed point step in spaces of controls. We use it to highlight the differences between open and closed loop problems. We illustrate the implementation of this approach for linear quadratic and finite state space games, and we provide numerical results motivated by applications in biology and cyber-security. We introduce a new strategy for the solution of Mean Field Games in the presence of major and minor players. This approach is based on a formulation of the fixed point step in spaces of controls. We use it to highlight the differences between open and closed loop problems. We illustrate the implementation of this approach for linear quadratic and finite state space games, and we provide numerical results motivated by applications in biology and ...

93E20 ; 60H10 ; 60K35 ; 49K45

We consider competitive capacity investment for a duopoly of two distinct producers. The producers are exposed to stochastically fluctuating costs and interact through aggregate supply. Capacity expansion is irreversible and modeled in terms of timing strategies characterized through threshold rules. Because the impact of changing costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing the transitions among the discrete investment stages. Working in a continuous-time diffusion framework, we characterize and analyze the resulting Nash equilibrium and game values. Our analysis quantifies the dynamic competition effects and yields insight into dynamic preemption and over-investment in a general asymmetric setting. A case-study considering the impact of fluctuating emission costs on power producers investing in nuclear and coal-fired plants is also presented. We consider competitive capacity investment for a duopoly of two distinct producers. The producers are exposed to stochastically fluctuating costs and interact through aggregate supply. Capacity expansion is irreversible and modeled in terms of timing strategies characterized through threshold rules. Because the impact of changing costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing the transitions among the ...

93E20 ; 91B38 ; 91A80

The valuation of American options (a widespread type of financial contract) requires the numerical solution of an optimal stopping problem. Numerical methods for such problems have been widely investigated. Monte-Carlo methods are based on the implementation of dynamic programming principles coupled with regression techniques. In lower dimension, one can choose to tackle the related free boundary PDE with deterministic schemes.
Pricing of American options will therefore be inevitably heavier than the one of European options, which only requires the computation of a (linear) expectation. The calibration (fitting) of a stochastic model to market quotes for American options is therefore an a priori demanding task. Yet, often this cannot be avoided: on exchange markets one is typically provided only with market quotes for American options on single stocks (as opposed to large stock indexes - e.g. S&P500 - for which large amounts of liquid European options are typically available).
In this talk, we show how one can derive (approximate, but accurate enough) explicit formulas - therefore replacing other numerical methods, at least in a low-dimensional case - based on asymptotic calculus for diffusions.
More precisely: based on a suitable representation of the PDE free boundary, we derive an approximation of this boundary close to final time that refines the expansions known so far in the literature. Via the early premium formula, this allows to derive semi-closed expressions for the price of the American put/call. The final product is a calibration recipe of a Dupire's local volatility to American option data.
Based on joint work with Pierre Henry-Labordère.
The valuation of American options (a widespread type of financial contract) requires the numerical solution of an optimal stopping problem. Numerical methods for such problems have been widely investigated. Monte-Carlo methods are based on the implementation of dynamic programming principles coupled with regression techniques. In lower dimension, one can choose to tackle the related free boundary PDE with deterministic schemes.
Pricing of ...

93E20 ; 91G60

Nuage de mots clefs ici

Z