F Nous contacter


0

Documents  94A20 | enregistrements trouvés : 3

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Retrieving an arbitrary signal from the magnitudes of its inner products with the elements of a frame is not possible in infinite dimensions. Under certain conditions, signals can be retrieved satisfactorily however.

42C15 ; 46C05 ; 94A12 ; 94A15 ; 94A20

One of the important "products" of wavelet theory consists in the insight that it is often beneficial to consider sparsity in signal processing applications. In fact, wavelet compression relies on the fact that wavelet expansions of real-world signals and images are usually sparse. Compressive sensing builds on sparsity and tells us that sparse signals (expansions) can be recovered from incomplete linear measurements (samples) efficiently. This finding triggered an enormous research activity in recent years both in signal processing applications as well as their mathematical foundations. The present talk discusses connections of compressive sensing and time-frequency analysis (the sister of wavelet theory). In particular, we give on overview on recent results on compressive sensing with time-frequency structured random matrices.

Keywords: compressive sensing - time-frequency analysis - wavelets - sparsity - random matrices - $\ell_1$-minimization - radar - wireless communications
One of the important "products" of wavelet theory consists in the insight that it is often beneficial to consider sparsity in signal processing applications. In fact, wavelet compression relies on the fact that wavelet expansions of real-world signals and images are usually sparse. Compressive sensing builds on sparsity and tells us that sparse signals (expansions) can be recovered from incomplete linear measurements (samples) efficiently. This ...

94A20 ; 94A08 ; 42C40 ; 60B20 ; 90C25

Si $f$ est une fonction somme d'une séries trigonométrique lacunaire, elle est bien définie quand on donne sa restriction à un petit intervalle. Mais comment l'obtenir à partir de cette restriction ? C'est possible par un procédé d'analyse convexe, à savoir le prolongement minimal dans l'algèbre de Wiener. Ce prolongement minimal est la clé de l'echantillonnage parcimonieux (compressed sensing) exposé par Emmanuel Candès dans l'ICM de Zurich 2006 et dans un article de Candès, Romberg et Tao de la même année ; je donnerai un aperçu de variantes dans les méthodes et les résultats que j'ai publiés en 2013 dans les Annales de l'Institut Fourier. Si $f$ est une fonction somme d'une séries trigonométrique lacunaire, elle est bien définie quand on donne sa restriction à un petit intervalle. Mais comment l'obtenir à partir de cette restriction ? C'est possible par un procédé d'analyse convexe, à savoir le prolongement minimal dans l'algèbre de Wiener. Ce prolongement minimal est la clé de l'echantillonnage parcimonieux (compressed sensing) exposé par Emmanuel Candès dans l'ICM de Zurich ...

42A38 ; 42A55 ; 42A61 ; 65T50 ; 94A12 ; 94A20

Nuage de mots clefs ici

Z