F Nous contacter


0

Documents  30H20 | enregistrements trouvés : 3

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Two important examples of the determinantal point processes associated with the Hilbert spaces of holomorphic functions are the Ginibre point process and the set of zeros of the Gaussian Analytic Functions on the unit disk. In this talk, I will talk such class of determinantal point processes in greater generality. The main topics concerned are the equivalence of the reduced Palm measures and the quasi-invariance of these point processes under certain natural group action of the group of compactly supported diffeomorphisms of the phase space. This talk is based partly on the joint works with Alexander I. Bufetov and partly on a more recent joint work with Alexander I. Bufetov and Shilei Fan. Two important examples of the determinantal point processes associated with the Hilbert spaces of holomorphic functions are the Ginibre point process and the set of zeros of the Gaussian Analytic Functions on the unit disk. In this talk, I will talk such class of determinantal point processes in greater generality. The main topics concerned are the equivalence of the reduced Palm measures and the quasi-invariance of these point processes under ...

60G55 ; 46E20 ; 30H20

Generalizing results of Rossi and Vergne for the holomorphic discrete series on symmetric domains, on the one hand, and of Chailuek and Hall for Toeplitz operators on the ball, on the other hand, we establish existence of analytic continuation of weighted Bergman spaces, in the weight (Wallach) parameter, as well as of the associated Toeplitz operators (with sufficiently nice symbols), on any smoothly bounded strictly pseudoconvex domain. Still further extension to Sobolev spaces of holomorphic functions is likewise treated. Generalizing results of Rossi and Vergne for the holomorphic discrete series on symmetric domains, on the one hand, and of Chailuek and Hall for Toeplitz operators on the ball, on the other hand, we establish existence of analytic continuation of weighted Bergman spaces, in the weight (Wallach) parameter, as well as of the associated Toeplitz operators (with sufficiently nice symbols), on any smoothly bounded strictly pseudoconvex domain. Still ...

47B35 ; 30H20

Let $f$ and $g$ be functions, not identically zero, in the Fock space $F^2$ of $C^n$. We show that the product $T_fT_\bar{g}$ of Toeplitz operators on $F^2$ is bounded if and only if $f= e^p$ and $g= ce^{-p}$, where $c$ is a nonzero constant and $p$ is a linear polynomial.

47B35 ; 30H20

Nuage de mots clefs ici

Z