F Nous contacter


0

Documents  20G43 | enregistrements trouvés : 2

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

We begin by introducing to the diagrammatic Cherednik algebras of Webster. We then summarise some recent results (in joint work with Anton Cox and Liron Speyer) concerning the representation theory of these algebras. In particular we generalise Kleshchev-type decomposition numbers, James-Donkin row and column removal phenomena, and the Kazhdan-Lusztig approach to calculating decomposition numbers.

20G43 ; 20F55 ; 20B30

After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the Hamiltonian with Schur polynomials, this is equivalent to proving (1) the concentration of profiles of Young diagrams around a limit shape and (2) their global Gaussian fluctuations for Schur measures with symbol $v : T \to R$ on the unit circle $T$. We identify the emergent objects with the push-forward along $v$ of (1) the uniform measure on $T$ and (2) $H^{1/2}$ noise on $T$. Our proofs exploit the integrability of the model as described by Nazarov-Sklyanin (2013). As time permits, we discuss structural connections to the theory of the topological recursion. After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the ...

05E10 ; 20G43 ; 37K10

Nuage de mots clefs ici

Z