En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 37N30 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
High-fidelity numerical simulation of physical systems modeled by time-dependent partial differential equations (PDEs) has been at the center of many technological advances in the last century. However, for engineering applications such as design, control, optimization, data assimilation, and uncertainty quantification, which require repeated model evaluation over a potentially large number of parameters, or initial conditions, these simulations remain prohibitively expensive, even with state-of-art PDE solvers. The necessity of reducing the overall cost for such downstream applications has led to the development of surrogate models, which captures the core behavior of the target system but at a fraction of the cost. In this context, new advances in machine learning provide a new path for developing surrogates models, particularly when the PDEs are not known and the system is advection-dominated. In a nutshell, we seek to find a data-driven latent representation of the state of the system, and then learn the latent-space dynamics. This allows us to compress the information, and evolve in compressed form, therefore, accelerating the models. In this series of lectures, I will present recent advances in two fronts: deterministic and probabilistic modeling latent representations. In particular, I will introduce the notions of hyper-networks, a neural network that outputs another neural network, and diffusion models, a framework that allows us to represent probability distributions of trajectories directly. I will provide the foundation for such methodologies, how they can be adapted to scientific computing, and which physical properties they need to satisfy. Finally, I will provide several examples of applications to scientific computing.[-]
High-fidelity numerical simulation of physical systems modeled by time-dependent partial differential equations (PDEs) has been at the center of many technological advances in the last century. However, for engineering applications such as design, control, optimization, data assimilation, and uncertainty quantification, which require repeated model evaluation over a potentially large number of parameters, or initial conditions, these simulations ...[+]

37N30 ; 65C20 ; 65L20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
High-fidelity numerical simulation of physical systems modeled by time-dependent partial differential equations (PDEs) has been at the center of many technological advances in the last century. However, for engineering applications such as design, control, optimization, data assimilation, and uncertainty quantification, which require repeated model evaluation over a potentially large number of parameters, or initial conditions, these simulations remain prohibitively expensive, even with state-of-art PDE solvers. The necessity of reducing the overall cost for such downstream applications has led to the development of surrogate models, which captures the core behavior of the target system but at a fraction of the cost. In this context, new advances in machine learning provide a new path for developing surrogates models, particularly when the PDEs are not known and the system is advection-dominated. In a nutshell, we seek to find a data-driven latent representation of the state of the system, and then learn the latent-space dynamics. This allows us to compress the information, and evolve in compressed form, therefore, accelerating the models. In this series of lectures, I will present recent advances in two fronts: deterministic and probabilistic modeling latent representations. In particular, I will introduce the notions of hyper-networks, a neural network that outputs another neural network, and diffusion models, a framework that allows us to represent probability distributions of trajectories directly. I will provide the foundation for such methodologies, how they can be adapted to scientific computing, and which physical properties they need to satisfy. Finally, I will provide several examples of applications to scientific computing.[-]
High-fidelity numerical simulation of physical systems modeled by time-dependent partial differential equations (PDEs) has been at the center of many technological advances in the last century. However, for engineering applications such as design, control, optimization, data assimilation, and uncertainty quantification, which require repeated model evaluation over a potentially large number of parameters, or initial conditions, these simulations ...[+]

37N30 ; 65C20 ; 65L20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
High-fidelity numerical simulation of physical systems modeled by time-dependent partial differential equations (PDEs) has been at the center of many technological advances in the last century. However, for engineering applications such as design, control, optimization, data assimilation, and uncertainty quantification, which require repeated model evaluation over a potentially large number of parameters, or initial conditions, these simulations remain prohibitively expensive, even with state-of-art PDE solvers. The necessity of reducing the overall cost for such downstream applications has led to the development of surrogate models, which captures the core behavior of the target system but at a fraction of the cost. In this context, new advances in machine learning provide a new path for developing surrogates models, particularly when the PDEs are not known and the system is advection-dominated. In a nutshell, we seek to find a data-driven latent representation of the state of the system, and then learn the latent-space dynamics. This allows us to compress the information, and evolve in compressed form, therefore, accelerating the models. In this series of lectures, I will present recent advances in two fronts: deterministic and probabilistic modeling latent representations. In particular, I will introduce the notions of hyper-networks, a neural network that outputs another neural network, and diffusion models, a framework that allows us to represent probability distributions of trajectories directly. I will provide the foundation for such methodologies, how they can be adapted to scientific computing, and which physical properties they need to satisfy. Finally, I will provide several examples of applications to scientific computing.[-]
High-fidelity numerical simulation of physical systems modeled by time-dependent partial differential equations (PDEs) has been at the center of many technological advances in the last century. However, for engineering applications such as design, control, optimization, data assimilation, and uncertainty quantification, which require repeated model evaluation over a potentially large number of parameters, or initial conditions, these simulations ...[+]

37N30 ; 65C20 ; 65L20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Classical model reduction techniques project the governing equations onto linear subspaces of the high-dimensional state-space. However, for problems with slowly decaying Kolmogorov-n-widths such as certain transport-dominated problems, classical linear-subspace reduced order models (ROMs) of low dimension might yield inaccurate results. Thus, the reduced space needs to be extended to more general nonlinear manifolds. Moreover, as we are dealing with Hamiltonian systems, it is crucial that the underlying symplectic structure is preserved in the reduced model.
To the best of our knowledge, existing literatures addresses either model reduction on manifolds or symplectic model reduction for Hamiltonian systems, but not their combination. In this talk, we bridge the two aforementioned approaches by providing a novel projection technique called symplectic manifold Galerkin, which projects the Hamiltonian system onto a nonlinear symplectic trial manifold such that the reduced model is again a Hamiltonian system. We derive analytical results such as stability, energy-preservation and a rigorous a-posteriori error bound. Moreover, we construct a weakly symplectic convolutional autoencoder in order to computationally approximate the nonlinear symplectic trial manifold. We numerically demonstrate the ability of the method to outperform structure-preserving linear subspace ROMs results for a linear wave equation for which a slow decay of the Kolmogorov-n-width can be observed.[-]
Classical model reduction techniques project the governing equations onto linear subspaces of the high-dimensional state-space. However, for problems with slowly decaying Kolmogorov-n-widths such as certain transport-dominated problems, classical linear-subspace reduced order models (ROMs) of low dimension might yield inaccurate results. Thus, the reduced space needs to be extended to more general nonlinear manifolds. Moreover, as we are dealing ...[+]

65P10 ; 34C20 ; 37J25 ; 37M15 ; 37N30

Sélection Signaler une erreur