F Nous contacter


0

Documents  Agrachev, Andrei A. | enregistrements trouvés : 1

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

A sub-Riemannian distance is obtained when minimizing lengths of paths which are tangent to a distribution of planes. Such distances differ substantially from Riemannian distances, even in the simplest example, the 3-dimensional Heisenberg group. This raises many questions in metric geometry: embeddability in Banach spaces, bi-Lipschitz or bi-Hölder comparison of various examples. Emphasis will be put on Gromov's results on the Hölder homeomorphism problem, and on a quasisymmetric version of it motivated by Riemannian geometry. A sub-Riemannian distance is obtained when minimizing lengths of paths which are tangent to a distribution of planes. Such distances differ substantially from Riemannian distances, even in the simplest example, the 3-dimensional Heisenberg group. This raises many questions in metric geometry: embeddability in Banach spaces, bi-Lipschitz or bi-Hölder comparison of various examples. Emphasis will be put on Gromov's results on the Hölder ...

53C20 ; 53C15

Nuage de mots clefs ici

Z