F Nous contacter


0

Documents  Abakumov, Evgeny | enregistrements trouvés : 5

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Starting with a personal tribute to Victor Havin (1933-2015), I discuss a dozen achievements of Great Havin's Analysis Seminar, as well as some challenging still unsolved problems.
The Havin publications list is available in the PDF file at the bottom of the page.

30H10 ; 01A60 ; 01A70

We consider solutions of the semi-discrete Schrödinger equation (where time is continuous and spacial variable is discrete), $\partial_tu = i(\Delta_du + V u)$, where $\Delta_d$ is the standard discrete Laplacian on $\mathbb{Z}^n$ and $u : [0, 1] \times \mathbb{Z}^d \to \mathbb{C}$. Uncertainty principle states that a non-trivial solution of the free equation (without potential) cannot be sharply localized at two distinct times. We discuss different extensions of this result to equations with bounded potentials. The continuous case was studied in a series of articles by L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega.
The talk is mainly based on joint work with Ph. Jaming, Yu. Lyubarskii, and K.-M. Perfekt.
We consider solutions of the semi-discrete Schrödinger equation (where time is continuous and spacial variable is discrete), $\partial_tu = i(\Delta_du + V u)$, where $\Delta_d$ is the standard discrete Laplacian on $\mathbb{Z}^n$ and $u : [0, 1] \times \mathbb{Z}^d \to \mathbb{C}$. Uncertainty principle states that a non-trivial solution of the free equation (without potential) cannot be sharply localized at two distinct times. We discuss ...

35Q55 ; 35A02

Si $f$ est une fonction somme d'une séries trigonométrique lacunaire, elle est bien définie quand on donne sa restriction à un petit intervalle. Mais comment l'obtenir à partir de cette restriction ? C'est possible par un procédé d'analyse convexe, à savoir le prolongement minimal dans l'algèbre de Wiener. Ce prolongement minimal est la clé de l'echantillonnage parcimonieux (compressed sensing) exposé par Emmanuel Candès dans l'ICM de Zurich 2006 et dans un article de Candès, Romberg et Tao de la même année ; je donnerai un aperçu de variantes dans les méthodes et les résultats que j'ai publiés en 2013 dans les Annales de l'Institut Fourier. Si $f$ est une fonction somme d'une séries trigonométrique lacunaire, elle est bien définie quand on donne sa restriction à un petit intervalle. Mais comment l'obtenir à partir de cette restriction ? C'est possible par un procédé d'analyse convexe, à savoir le prolongement minimal dans l'algèbre de Wiener. Ce prolongement minimal est la clé de l'echantillonnage parcimonieux (compressed sensing) exposé par Emmanuel Candès dans l'ICM de Zurich ...

42A38 ; 42A55 ; 42A61 ; 65T50 ; 94A12 ; 94A20

I will report on the results of my recent work with Dmitri Yafaev (Rennes I). We consider functions $\omega$ on the unit circle with a finite number of logarithmic singularities. We study the approximation of $\omega$ by rational functions in the BMO norm. We find the leading term of the asymptotics of the distance in the BMO norm between $\omega$ and the set of rational functions of degree $n$ as $n$ goes to infinity. Our approach relies on the Adamyan-Arov-Krein theorem and on the study of the asymptotic behaviour of singular values of Hankel operators. In particular, we make use of the localisation principle, which allows us to combine the contributions of several singularities in one asymptotic formula. I will report on the results of my recent work with Dmitri Yafaev (Rennes I). We consider functions $\omega$ on the unit circle with a finite number of logarithmic singularities. We study the approximation of $\omega$ by rational functions in the BMO norm. We find the leading term of the asymptotics of the distance in the BMO norm between $\omega$ and the set of rational functions of degree $n$ as $n$ goes to infinity. Our approach relies on the ...

41A20 ; 47B06 ; 47B35

This is joint work with Éric Ricard. We give a proof of the Khintchine inequalities in non- commutative $L_p$-spaces for all $0 < p < 1$. This case remained open since the first proof given by Francoise Lust-Piquard in 1986 for $1 < p < \infty$. These inequalities are valid for the Rademacher functions or Gaussian random variables, but also for more general sequences, e.g. for lacunary Fourier series or the analogues of Gaussian variables in free probability.

The Khintchine inequalities for non-commutative $L_p$-spaces play an important ro—le in the recent developments in non-commutative Functional Analysis, and in particular in Operator Space Theory. Just like their commutative counterpart for ordinary $L_p$-spaces, they are a crucial tool to understand the behavior of unconditionally convergent series of random variables, or random vectors, in non-commutative $L_p$. The commutative version for $p = 1$ is closely related to Grothendieck's Theorem. In the most classical setting, the non-commutative Khintchine inequalities deal with Rademacher series of the form

$S=\sum_kr_k(t)x_k$

where $(r_k)$ are the Rademacher functions on the Lebesgue interval where the coefficients $x_k$ are in the Schatten $q$-class or in a non-commutative $L_q$-space associated to a semifinite trace $\tau$. Let us denote simply by $||.||_q$ the norm (or quasi-norm) in the latter Banach (or quasi-Banach) space, that we will denote by $L_q(\tau)$. When $\tau$ is the usual trace on $B(\ell_2)$, we recover the Schatten $q$-class. By Kahane's well known results, $S$ converges almost surely in norm if it converges in $L_q(dt;L_q(\tau))$. Thus to characterize the almost sure norm-convergence for series such as $S$, it suffices to produce a two sided equivalent of $||S||_{L_q(dt;L_q(\tau))}$ when $S$ is a finite sum, and this is precisely what the non-commutative Khintchine inequalities provide :
For any $0 < q < \infty$ there are positive constants $\alpha_q,\beta_q$ such that for any finite set $(x_1, . . . , x_n)$ in $L_q(\tau)$ we have

$(\beta_q)^{-1}|||(x_k)|||_q\leq\left(\int||S(t)||^q_qdt\right)^{1/q}\leq\alpha_q|||(x_k)|||_q$

where $|||(x_k)|||_q$ is defined as follows :
If $2\le q<\infty$

$|||x_k|||_q \overset{def}{=} \max\lbrace ||(\sum x^*_k x_k)^{1/2} ||_q, ||(\sum x_kx^*_k)^{1/2}||_q\rbrace$ (1)

and if $0\le q<2$:

$|||x|||_q \overset{def}{=} \underset{x_k=a_k+b_k}{inf} \lbrace ||(\sum a^*_ka_k)^{1/2} ||_q + ||(\sum b_kb^*_k)^{1/2}||_q\rbrace$. (2)

Note that $\beta=1$ if $q\ge2$, while $\alpha_q=1$ if $q\le2$ and the corresponding one sided bounds are easy. The difficulty is to verify the other side.
This is joint work with Éric Ricard. We give a proof of the Khintchine inequalities in non- commutative $L_p$-spaces for all $0 < p < 1$. This case remained open since the first proof given by Francoise Lust-Piquard in 1986 for $1 < p < \infty$. These inequalities are valid for the Rademacher functions or Gaussian random variables, but also for more general sequences, e.g. for lacunary Fourier series or the analogues of Gaussian variables in ...

46L51 ; 46L07 ; 47L25 ; 47L20

Nuage de mots clefs ici

Z