Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Logarithms and deformation quantization
Alekseev, Anton (Auteur de la Conférence) | CIRM (Editeur )

We prove the statement$/$conjecture of M. Kontsevich on the existence of the logarithmic formality morphism $\mathcal{U}^{log}$. This question was open since 1999, and the main obstacle was the presence of $dr/r$ type singularities near the boundary $r = 0$ in the integrals over compactified configuration spaces. The novelty of our approach is the use of local torus actions on configuration spaces of points in the upper half-plane. It gives rise to a version of Stokes' formula for differential forms with singularities at the boundary which implies the formality property of $\mathcal{U}^{log}$. We also show that the logarithmic formality morphism admits a globalization from $\mathbb{R}^{d}$ to an arbitrary smooth manifold. We prove the statement$/$conjecture of M. Kontsevich on the existence of the logarithmic formality morphism $\mathcal{U}^{log}$. This question was open since 1999, and the main obstacle was the presence of $dr/r$ type singularities near the boundary $r = 0$ in the integrals over compactified configuration spaces. The novelty of our approach is the use of local torus actions on configuration spaces of points in the upper half-plane. It gives rise ...

53D55 ; 17B56

Filtrer

Domaine
Codes MSC
Audience

Z
v>

Les Interviews du CIRM

Forum mathématiques vivantes

Documentation mathématique

Services numériques pour les mathématiques

  • |
  • liste des Conferenciers
  • |
  • Domaines
  • |
  • Recherche
  • G

    F Nous contacter


    0

    Documents  Alekseev, Anton | enregistrements trouvés : 1

    O
       

    -A +A

    P Q