Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Mercat, Paul (Auteur de la Conférence) | CIRM (Editeur )

In the way of Arnoux-Ito, we give a general geometric criterion for a subshift to be measurably conjugated to a domain exchange and to a translation on a torus. For a subshift coming from an unit Pisot irreducible substitution, we will see that it becomes a simple topological criterion. More precisely, we define a topology on $\mathbb{Z}^d$ for which the subshift has pure discrete spectrum if and only if there exists a domain of the domain exchange on the discrete line that has non-empty interior. We will see how we can compute exactly such interior using regular languages. This gives a way to decide the Pisot conjecture for any example of unit Pisot irreducible substitution.

Joint work with Shigeki Akiyama. In the way of Arnoux-Ito, we give a general geometric criterion for a subshift to be measurably conjugated to a domain exchange and to a translation on a torus. For a subshift coming from an unit Pisot irreducible substitution, we will see that it becomes a simple topological criterion. More precisely, we define a topology on $\mathbb{Z}^d$ for which the subshift has pure discrete spectrum if and only if there exists a domain of the domain ...

Joint work with Shigeki Akiyama. In the way of Arnoux-Ito, we give a general geometric criterion for a subshift to be measurably conjugated to a domain exchange and to a translation on a torus. For a subshift coming from an unit Pisot irreducible substitution, we will see that it becomes a simple topological criterion. More precisely, we define a topology on $\mathbb{Z}^d$ for which the subshift has pure discrete spectrum if and only if there exists a domain of the domain ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Damanik, David (Auteur de la Conférence) | CIRM (Editeur )

In this talk we explain how the Fibonacci trace map arises from the Fibonacci substitution and leads to a unified framework in which a variety of models can be studied. We discuss the associated foliations, hyperbolic sets, stable and unstable manifolds, and how the intersections of the stable manifolds with the model-dependent curve of initial conditions allow one to translate dynamical into spectral results.

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Berthé, Valérie (Auteur de la Conférence) | CIRM (Editeur )

Dimension groups are invariants of orbital equivalence. We show in this lecture how to compute the dimension group of tree subshifts. Tree subshifts are defined in terms of extension graphs that describe the left and right extensions of factors of their languages: the extension graphs are trees. This class of subshifts includes classical families such as Sturmian, Arnoux-Rauzy subshifts, or else, codings of interval exchanges. We rely on return word properties for tree subshifts: every finite word in the language of a tree word admits exactly d return words, where d is the cardinality of the alphabet.

This is joint work with P. Cecchi, F. Dolce, F. Durand, J. Leroy, D. Perrin, S. Petite. Dimension groups are invariants of orbital equivalence. We show in this lecture how to compute the dimension group of tree subshifts. Tree subshifts are defined in terms of extension graphs that describe the left and right extensions of factors of their languages: the extension graphs are trees. This class of subshifts includes classical families such as Sturmian, Arnoux-Rauzy subshifts, or else, codings of interval exchanges. We rely on return ...

This is joint work with P. Cecchi, F. Dolce, F. Durand, J. Leroy, D. Perrin, S. Petite. Dimension groups are invariants of orbital equivalence. We show in this lecture how to compute the dimension group of tree subshifts. Tree subshifts are defined in terms of extension graphs that describe the left and right extensions of factors of their languages: the extension graphs are trees. This class of subshifts includes classical families such as Sturmian, Arnoux-Rauzy subshifts, or else, codings of interval exchanges. We rely on return ...

Z

- © Powered by Kentika
- |
- 2018
- |
- Mentions légales

One of the most fundamental problem in tiling theory is to decide, given a surface, a set of tiles and a tiling rule, whether there exist a way to tile the surface using the set of tiles and following the rules. As proven by Berger in the 60’s, this problem is undecidable in general.

When formulated in terms of tilings of the discrete plane by unit tiles with colored constraints, this is called the Domino Problem and was introduced by Wang in an effort to solve satisfaction problems for ??? formulas by translating the problem into a geometric problem.

In this course, we will give a brief description of the problem and to the meaning of the word “undecidable”, and then give two different proofs of the result. One of the most fundamental problem in tiling theory is to decide, given a surface, a set of tiles and a tiling rule, whether there exist a way to tile the surface using the set of tiles and following the rules. As proven by Berger in the 60’s, this problem is undecidable in general.

When formulated in terms of tilings of the discrete plane by unit tiles with colored constraints, this is called the Domino Problem and was introduced by Wang in an ...

When formulated in terms of tilings of the discrete plane by unit tiles with colored constraints, this is called the Domino Problem and was introduced by Wang in an effort to solve satisfaction problems for ??? formulas by translating the problem into a geometric problem.

In this course, we will give a brief description of the problem and to the meaning of the word “undecidable”, and then give two different proofs of the result. One of the most fundamental problem in tiling theory is to decide, given a surface, a set of tiles and a tiling rule, whether there exist a way to tile the surface using the set of tiles and following the rules. As proven by Berger in the 60’s, this problem is undecidable in general.

When formulated in terms of tilings of the discrete plane by unit tiles with colored constraints, this is called the Domino Problem and was introduced by Wang in an ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Thuswaldner, Jörg (Auteur de la Conférence) | CIRM (Editeur )

Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword complexity.

It has been conjectured since the early 1990ies that this correspondence carries over to generalized continued fraction algorithms, rotations on higher dimensional tori, and so-called $S$-adic sequences generated by substitutions. The idea of working towards this generalization is known as Rauzy’s program. Although, starting with Rauzy (1982) a number of examples for such a generalization was devised, Cassaigne, Ferenczi, and Zamboni (2000) came up with a counterexample that showed the limitations of such a generalization.

Nevertheless, recently Berthé, Steiner, and Thuswaldner (2016) made some further progress on Rauzy’s program and were able to set up a generalization of the above correspondences. They proved that the above conjecture is true under certain natural conditions. A prominent role in this generalization is played by tilings induced by generalizations of the classical Rauzy fractal introduced by Rauzy (1982).

Another idea which is related to the above results goes back to Artin (1924), who observed that the classical continued fraction algorithm and its natural extension can be viewed as a Poincaré section of the geodesic flow on the space $SL_2(\mathbb{Z}) \ SL_2(\mathbb{R})$. Arnoux and Fisher (2001) revisited Artin’s idea and showed that the above mentioned correspondence between continued fractions, rotations, and Sturmian sequences can be interpreted in a very nice way in terms of an extension of this geodesic flow which they called the scenery flow. Currently, Arnoux et al. are setting up elements of a generalization of this connection as well.

It is the aim of my series of lectures to review the above results. Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword ...

It has been conjectured since the early 1990ies that this correspondence carries over to generalized continued fraction algorithms, rotations on higher dimensional tori, and so-called $S$-adic sequences generated by substitutions. The idea of working towards this generalization is known as Rauzy’s program. Although, starting with Rauzy (1982) a number of examples for such a generalization was devised, Cassaigne, Ferenczi, and Zamboni (2000) came up with a counterexample that showed the limitations of such a generalization.

Nevertheless, recently Berthé, Steiner, and Thuswaldner (2016) made some further progress on Rauzy’s program and were able to set up a generalization of the above correspondences. They proved that the above conjecture is true under certain natural conditions. A prominent role in this generalization is played by tilings induced by generalizations of the classical Rauzy fractal introduced by Rauzy (1982).

Another idea which is related to the above results goes back to Artin (1924), who observed that the classical continued fraction algorithm and its natural extension can be viewed as a Poincaré section of the geodesic flow on the space $SL_2(\mathbb{Z}) \ SL_2(\mathbb{R})$. Arnoux and Fisher (2001) revisited Artin’s idea and showed that the above mentioned correspondence between continued fractions, rotations, and Sturmian sequences can be interpreted in a very nice way in terms of an extension of this geodesic flow which they called the scenery flow. Currently, Arnoux et al. are setting up elements of a generalization of this connection as well.

It is the aim of my series of lectures to review the above results. Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Solomyak, Boris (Auteur de la Conférence) | CIRM (Editeur )

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Rigo, Michel (Auteur de la Conférence) | CIRM (Editeur )

The general aim of these lectures is to present some interplay between combinatorial game theory (CGT) and combinatorics on (multidimensional) words.

In the first introductory lecture, we present some basic concepts from combinatorial game theory (positions of a game, Nim-sum, Sprague-Grundy function, Wythoff’s game, ...). We also review some concepts from combinatorics on words. We thus introduce the well-known k-automatic sequences and review some of their characterizations (in terms of morphisms, finiteness of their k-kernel,...). These sequences take values in a finite set but the Sprague-Grundy function of a game, such as Nim of Wythoff, is usually unbounded. This provides a motivation to introduce k-regular sequences (in the sense of Allouche and Shallit) whose k-kernel is not finite, but finitely generated.

In the second lecture, games played on several piles of token naturally give rise to a multi-dimensional setting. Thus, we reconsider k-automatic and k-regular sequences in this extended framework. In particular, determining the structure of the bidimensional array encoding the (loosing) P-positions of the Wythoff’s game is a long-standing and challenging problem in CGT. Wythoff’s game is linked to non-standard numeration system: P-positions can be determined by writing those in the Fibonacci system. Next, we present the concept of shape-symmetric morphism: instead of iterating a morphism where images of letters are (hyper-)cubes of a fixed length k, one can generalize the procedure to images of various parallelepipedic shape. The shape-symmetry condition introduced twenty years ago by Maes permits to have well-defined fixed point.

In the last lecture, we move to generalized numeration systems: abstract numeration systems (built on a regular language) and link them to morphic (multidimensional) words. In particular, pictures obtained by shape-symmetric morphisms coincide with automatic sequences associated with an abstract numeration system. We conclude these lectures with some work in progress about games with a finite rule-set. This permits us to discuss a bit Presburger definable sets. The general aim of these lectures is to present some interplay between combinatorial game theory (CGT) and combinatorics on (multidimensional) words.

In the first introductory lecture, we present some basic concepts from combinatorial game theory (positions of a game, Nim-sum, Sprague-Grundy function, Wythoff’s game, ...). We also review some concepts from combinatorics on words. We thus introduce the well-known k-automatic sequences and review ...

In the first introductory lecture, we present some basic concepts from combinatorial game theory (positions of a game, Nim-sum, Sprague-Grundy function, Wythoff’s game, ...). We also review some concepts from combinatorics on words. We thus introduce the well-known k-automatic sequences and review some of their characterizations (in terms of morphisms, finiteness of their k-kernel,...). These sequences take values in a finite set but the Sprague-Grundy function of a game, such as Nim of Wythoff, is usually unbounded. This provides a motivation to introduce k-regular sequences (in the sense of Allouche and Shallit) whose k-kernel is not finite, but finitely generated.

In the second lecture, games played on several piles of token naturally give rise to a multi-dimensional setting. Thus, we reconsider k-automatic and k-regular sequences in this extended framework. In particular, determining the structure of the bidimensional array encoding the (loosing) P-positions of the Wythoff’s game is a long-standing and challenging problem in CGT. Wythoff’s game is linked to non-standard numeration system: P-positions can be determined by writing those in the Fibonacci system. Next, we present the concept of shape-symmetric morphism: instead of iterating a morphism where images of letters are (hyper-)cubes of a fixed length k, one can generalize the procedure to images of various parallelepipedic shape. The shape-symmetry condition introduced twenty years ago by Maes permits to have well-defined fixed point.

In the last lecture, we move to generalized numeration systems: abstract numeration systems (built on a regular language) and link them to morphic (multidimensional) words. In particular, pictures obtained by shape-symmetric morphisms coincide with automatic sequences associated with an abstract numeration system. We conclude these lectures with some work in progress about games with a finite rule-set. This permits us to discuss a bit Presburger definable sets. The general aim of these lectures is to present some interplay between combinatorial game theory (CGT) and combinatorics on (multidimensional) words.

In the first introductory lecture, we present some basic concepts from combinatorial game theory (positions of a game, Nim-sum, Sprague-Grundy function, Wythoff’s game, ...). We also review some concepts from combinatorics on words. We thus introduce the well-known k-automatic sequences and review ...