Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We study the smallest parts function introduced by Andrews. The associated generating function forms a component of a natural mock modular form of weight 3/2 whose shadow is the Dedekind eta function. We obtain an exact formula and an algebraic formula for each value of the smallest parts function; these are analogues of the formulas of Rademacher and Bruinier-Ono for the ordinary partition function. The convergence of our expression is non-trivial; the proof relies on power savings estimates for weighted sums of generalized Kloosterman sums which follow from spectral methods. We study the smallest parts function introduced by Andrews. The associated generating function forms a component of a natural mock modular form of weight 3/2 whose shadow is the Dedekind eta function. We obtain an exact formula and an algebraic formula for each value of the smallest parts function; these are analogues of the formulas of Rademacher and Bruinier-Ono for the ordinary partition function. The convergence of our expression is ...

11F37 ; 11P82

Filtrer

Domaine
Codes MSC
Audience

Z
s="more"> Outreach
  • |
  • liste des Conferenciers
  • |
  • Domaines
  • |
  • Recherche
  • G

    F Nous contacter


    0

    Documents  Ahlgren, Scott | enregistrements trouvés : 1

    O
       

    -A +A

    P Q