Wavelets, Shearlets and Geometric Frames: Part II

Philipp Grohs1 and Axel Obermeier2

October 22, 2014

1ETH Zürich
2ETH Zürich, supported by SNF grant 146356
3. Curvelets, shearlets and parabolic molecules
4. Related systems
5. Applications
RECALL...

Definition (Donoho (2001))
The set \mathcal{E} of cartoon images is given by

$$\mathcal{E} := \{ f = f_0 + \chi_B f_1 \},$$

where $f_0, f_1 \in C^2([0, 1]^2)$ and χ_B is the indicator function of $B \subset [0, 1]^2$ with C^2 boundary.

Recall benchmark approximation rate for \mathcal{E} is N^{-1}!
LIMITATIONS OF WAVELETS

THEOREM
We have that

\[s^* \left(\mathcal{E}, \mathcal{W}^{2D}(\varphi, \psi, \alpha) \right) = \frac{1}{2}. \]

This is one magnitude short of the optimal rate \(N^{-1} \).
Can we find better dictionaries??
Construct (tight) frame for $L^2(\mathbb{R}^2)$ such that for all $f \in \mathcal{E}$ we have

$$\| f - f_N \|_2 \lesssim N^{-1},$$

where f_N is the reconstruction from the N biggest frame coefficients.
3. Curvelets, Shearlets and Parabolic Molecules
Main Idea: Wavelets are supported in isotropic quadrilaterals of width $\sim 2^j$. Too many such quadrilaterals are needed to cover the singularity curve.

\sim basis functions supported in an anisotropic rectangle of length $\sim 2^{j/2}$ and width $\sim 2^j$. If we also allow rotations along (say) $2^{j/2}$ equispaced angles at scale j we might have a chance.
Inspired by this idea we seek to construct systems of the form

$$\varphi_{j,l,k}(x) := 2^{3j/4} \psi(D_{2j} R_{\theta_{j,l}} x - k),$$

where

$$D_\alpha := \text{diag}(\alpha, \sqrt{\alpha}), \quad R_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

and

$$\theta_{j,l} \sim 2^{-j/2} l 2\pi, \quad l = -2^{j/2}, \ldots, 2^{j/2}.$$

How to realize such a system?
Curvelets: A first Breakthrough

Start with decomposition of Fourier space into ‘parabolic wedges’ of aspect ratio ‘length ∼ width2’ (eg. length ∼ 2^j, width ∼ $2^{j/2}$) with associated partition-of-unity
\[
\{ V_{j,l} \}_{j \in \mathbb{N}, l \in \{-2^{j/2}, \ldots, 2^{j/2}\}}
\]
s.t.
\[
\sum_{j,l} |V_{j,l}(\xi)|^2 = 1.
\]
CURVELETS: A first Breakthrough

Build dictionary by modulating the partition functions:

$$\hat{\varphi}_{j,l,k}(\xi) := 2^{-3j/4} \exp(2\pi i R_{\theta_j,l}^{-1} D_{2^{-j} k} \xi) V_{j,l}(\xi), \quad j \in \mathbb{N}, \ l \in \{-2^{j/2}, \ldots, 2^{j/2}\}\]$$

where

$$D_\alpha := \text{diag}(\alpha, \sqrt{\alpha}), \quad R_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

and

$$\theta_{j,l} \sim 2^{-j/2} l 2\pi, \quad l = -2^{j/2}, \ldots, 2^{j/2}.$$

We collect all indices in the index set Λ and get dictionary $\{\varphi_\lambda\}_{\lambda \in \Lambda}$.
Curvelets: A first Breakthrough

Space-picture:

\[\varphi_{j,l,k} := 2^{-3j/4} T_{U_{j,l},k} \mathcal{F}^{-1} V_{j,l}, \quad j \in \mathbb{N}, \ l \in \{-2^{j/2}, \ldots, 2^{j/2}\}, \ k \in \mathbb{Z}^2, \]

where

\[T_Y f(\cdot) := f(\cdot - y), \]

\[U_{j,l} := R_{\theta_{j,l}}^{-1} D_{2^{-j}}, \]

\[j: \text{scale}, \ l: \text{angle}, \ k: \text{location}. \]
The system \(\{ \varphi_\lambda \}_{\lambda \in \Lambda} \) constitutes a Parseval frame for \(L^2(\mathbb{R}^2) \), i.e.

\[
\| f \|_{L^2}^2 = \sum_{\lambda \in \Lambda} | \langle f, \varphi_\lambda \rangle |^2
\]

and

\[
f = \sum_{\lambda \in \Lambda} \langle f, \varphi_\lambda \rangle \varphi_\lambda. \tag{1}
\]
Curvelets: A first Breakthrough

Curvelets are...
CURVELETS: A first Breakthrough

...essentially waveforms whose essential support satisfies ‘width \sim length2‘...
...oscillatory across the shorter edge and low-pass along the longer edge...
CURVELETS: A FIRST BREAKTHROUGH...scaled...
CURVELETS: A first Breakthrough...

...rotated...
Curvelets: A first Breakthrough

...and translated.
Anisotropic Scaling

Important: In contrast to 2D-wavelets which have essential support in quadrilaterals

\[2^{-j}[k_1 - a, k_1 + a] \times [k_2 - a, k_2 + a], \]

the supports of curvelets obeys a *parabolic scaling law*

length \(\sim 2^j \) and width \(\sim 2^{j/2} \).
Using elements satisfying parabolic scaling relation
length $\sim 2^{-j/2}$, width $\sim 2^{-j}$
we can cover the singularity curve with $\sim 2^{j/2}$ elements, as opposed to $\sim 2^j$ for isotropic methods (such as wavelets)
Heuristic: Isotropic Dilation vs. Anisotropic Dilation

so if we cut at scale J we only need $\sim 2^{J/2}$ coefficients
Heuristic: Isotropic Dilation vs. Anisotropic Dilation

cartoon functions are in the Sobolev space $H^{1/2}$, therefore, cutting of at scale J will induce an error of order $2^{-J/2}$
Heuristic: Isotropic Dilation vs. Anisotropic Dilation

and we arrive at the desired rate.
Optimality of Curvelets

Theorem (Candès-Donoho (2004))

Curvelets are optimal for cartoon-images, e.g.,

\[s^*(\mathcal{E}, \text{Curvelet}) = s^*(\mathcal{E}) = 1. \]

Actual proof *much* more complicated.
So far theoretical construction
Next step: construction of fast algorithms
⁻ Smiley
How implement rotations for digital data on a grid?
💡 Replace rotation by shearing!
Shearlets

Index set

\[\Lambda^\sigma := \left\{ (\varepsilon, j, l, k) \in \mathbb{Z}_2 \times \mathbb{Z}^4 : \varepsilon \in \{0, 1\}, j \geq 0, \ l = -2^{\lfloor j/2 \rfloor}, \ldots, 2^{\lfloor j/2 \rfloor} \right\}, \]

and the shearlet system

\[\Sigma := \{ \sigma_\lambda : \lambda \in \Lambda^\sigma \}, \]

with

\[\sigma_{(\varepsilon,0,0,k)}(\cdot) = \varphi(-k), \quad \sigma_{(\varepsilon,j,l,k)}(\cdot) = 2^{3j/4} \psi^\varepsilon \left(D_{2^j}^\varepsilon S_{l,j}^\varepsilon \cdot -k \right), \quad j \geq 1, \]

\[D_0^a = D_a, \quad D_1^a := \text{diag}(\sqrt{a}, a), \quad S_{l,j} := \begin{pmatrix} 1 & 12^{-|j/2|} \\ 0 & 1 \end{pmatrix}, \]

\[S_{l,j}^\top = (S_{l,j}^0)^\top. \]

\[\text{supp } \mathcal{F}\varphi \subset [-2, 2]^2, \]

\[\text{supp } \mathcal{F}\psi^0 \subset ([-4, -4] \cup [1, 4]) \times [-2, 2], \]

\[\text{supp } \mathcal{F}\psi^1 \subset [-2, 2] \times ([-4, -1] \cup [1, 4]). \]
Shearlets

Theorem (Guo-Labate (2008))

With a bandlimited shearlet frame Σ we have

$$s^*(\mathcal{E}, \Sigma) = s^*(\mathcal{E}) = 1.$$
Shearing better adapted to data sampled on digital grid
Fast algorithms exist
Also compactly supported shearlet frames available (Kutyniok et. al. (2012))
Software and publications available at www.shearlet.org
More general concept: *parabolic molecules* encompass all known constructions and yield simple proofs of optimal cartoon approximation (G-Kutyniok (2014)).
Literature

4. Related Systems
Consider dilation matrix $D_\alpha^\beta := \text{diag}(a, a^\beta)$. Build frames based on the principle

$$
\varphi_{j,l,k}(x) := 2^{j(1+\beta)/2}\psi(D_2^\beta R_{\theta_{j,l}} x - k),
$$

where

$$
\theta_{j,l} \sim 2^{-j(1-\beta)}l2\pi, \quad l = -2^{j/2}, \ldots, 2^{j(1-\beta)}.
$$

$\beta = 1$ Wavelets

$\beta = 1/2$ Curvelets, shearlets, parabolic molecules

$\beta = 0$ Ridgelets

$\sim \beta$-molecules (G-Keiper-Kutyniok-Schaefer (2014))
Fourier Partitionings

Left to right: Fourier partitioning associated to wavelets, curvelets, ridgelets.
New signal class of generalized cartoon-images

\[\mathcal{E}^\alpha := \{ f = f_0 + \chi_B f_1 \}, \]

where \(f_0, f_1 \in C^\alpha([0, 1]^2) \) and \(\chi_B \) is the indicator function of \(B \subset [0, 1]^2 \) with \(C^2 \) boundary.

Theorem (G-Keiper-Kutyniok-Schaefer (2014))

Frames of \(\beta \)-molecules are optimal for \(\mathcal{E}^\alpha \) if \(\beta = \alpha^{-1} \) and \(\beta \in [1/2, 1] \).
Line Singularities

Signal class

\[\mathcal{L}^\alpha = \{ f \in C^\alpha, \text{ apart from line discontinuities}\}. \]

Theorem (Candès (1999), G-Keiper-Kutyniok-Schaefer (2014))

0-molecules (aka ridgelets) are optimal for the signal class \(\mathcal{L}^\alpha \), e.g.

\[s^*(\mathcal{L}^\alpha, \text{ridgelets}) = s^*(\mathcal{L}^\alpha) = \alpha/2. \]

5. Some Applications
Morphological Component Analysis

Goal: Separate Signal into curvelike and pointlike components.

Source: G. Kutyniok
Wavelets are optimal for point-like features, curvelets/shearlets/parabolic molecules are optimal for curve-like features

For wavelet dictionary $\mathcal{W} = (\psi_{j,k})$ and curvelet frame $\Gamma = (\gamma_{j,k,l})$ consider combined dictionary $\mathcal{W} \cup \Gamma$ and, given

$$f = f_{\text{curv}} + f_{\text{point}}$$

seek the sparsest representation

$$f = \sum_{j,k} c_{j,k} \psi_{j,k} + \sum_{j,k,l} d_{j,k,l} \gamma_{j,k,l}.$$
Actual algorithm uses bandpass filter on \(f = \sum_i P_i f \) and solves, for each frequency part

\[
(\hat{f}^l_{\text{point}}, \hat{f}^l_{\text{curv}}) := \arg \min_{f^l_{\text{point}} + f^l_{\text{curv}} = P_i f} \| (f^l_{\text{point}}, \phi_j, k) \|_{\ell^1} + \| (f^l_{\text{curv}}, \gamma_j, k, l) \|_{\ell^1}.
\]

Under certain conditions it holds that

\[
\lim_{i \to \infty} \frac{\| \hat{f}^l_{\text{point}} - P_i f_{\text{point}} \| + \| \hat{f}^l_{\text{curv}} - P_i f_{\text{curv}} \|}{\| P_i f_{\text{point}} \| + \| P_i f_{\text{curv}} \|} = 0.
\]

Software available at www.shearlab.org

Link between Harmonic Analysis and Compressed Sensing
Solving Transport PDEs

Equations of the form

$$s \cdot \nabla u(x, s) + \kappa u(x, s) = f(x, s) + \mathcal{Q}(u)(x, s), \quad (x, s) \in \Omega \times S^{d-1},$$

where $\Omega \subset \mathbb{R}^d$, κ absorption coefficient, f source term and $\mathcal{Q}(u)$ scattering operator (for instance $\mathcal{Q}(u)(x, s) = \int_{S^{d-1}} K(s, t)u(x, t)dt$) + inflow BCs.

Stationary distribution of a phase-space density u whose evolution is governed by free transport, absorption, external sources and interaction with the surrounding medium via a scattering operator. Examples include radiative transfer (simulation of dense gas at very high temperatures) or socio-economic processes.
Kinetic Transport Equations

Difficulties in the numerical solution:

1. ‘Curse of dimensionality’: Problem is $2d-1$-dimensional
2. Line singularities transported along rays
3. The equation is not H^1-elliptic – wavelet and FE discretizations do not lead to well-conditioned linear systems
4. Anisotropy – anisotropic meshes cannot be used since they need to be combined for different directions.

Goal: Adaptive approximation schemes which operate in optimal computational complexity (accuracy vs. number of flops).

Question: What is the right discretization for such equations?
Solution of

\[s \cdot \nabla u + \kappa u = f \]

may be singular along lines \(\sim \) use ridgelets for discretization in space!
Let u be a solution of $s \cdot \nabla u + \kappa u = f$ which is C^n apart from a line discontinuity in direction s. Then there exists a computable ridgelet-based algorithm SOLVE which computes in N flops an approximation $u_N \in H^{1,s} := \{ v \in L^2 : s \cdot \nabla v \in L^2 \}$ with the approximation rate

$$
\| u - u_N \|_{H^{1,s}} \lesssim N^{-\frac{n-1}{2}}
$$

This rate is optimal.
Solving Transport PDEs

Numerical approximation computed by SOLVE converges exponentially, even if line discontinuities are present in the solution!

Compare ridgelet error $\sim \exp(-\gamma N^\delta)$ vs. error at least $\sim N^{-1/2}$ with conventional discretizations (wavelets, FEM)!
Solving Transport PDEs

Back to full kinetic equation with scattering
\[Q(u)(x, s) = \int_{S^1} u(x, s) ds \]

red: source term, blue absorption (scattering around obstacle) **Quantity of interest:** Incident radiation
\[\int_{S^1} u(x, s) ds. \]
Solution computed using ridgelets in space, together with *sparse collocation scheme*, breaking curse of dimensionality.
Solving Transport PDEs

- First provably convergent adaptive solver for transport PDEs
- Software package available at www.math.ethz.ch/~pgrohs/research/FFRT.
- Link between Harmonic Analysis and Numerics
Shearlet coefficients have different decay rates for different types of singularities.
Theorem (Guo-Labate (2008))

With $a = 2^{-j}$, the scale we have
Classification of Singularities

- Very competitive results
- Extension to 3D exists
- Software available from http://www.math.uh.edu/~dlabate/software.html
- Link between Harmonic Analysis and Geometry
Further Applications

- Time propagation of wave equations (Candès-Demanet (2006))
- Edge detection (Easley-Guo-Labate (2008))
- High quality denoising (Easley-Labate-Colonna (2009))
- Inpainting with theoretical guarantees (Genzel-Kutyniok (2015))
- Fast motion deblurring (G-Kereta-Wiesmann (2014))
SUMMARY

- Partitioning Fourier plane into anisotropic wedges yields dictionaries with built-in directionality
- This strategy yields families of representation systems capable of solving problems for which conventional systems fall short
- Fourier partitioning yields fast algorithms via FFT
- Harmonic Analysis is a treasure trove for designing dictionaries, customized to specific ‘data architectures’
End of Part II
Thank You!
Appendix: Proofs and Additional Material
Proof Sketch: We have
\[\|f\|_2^2 = \sum_{j,l} \int_{\text{supp } \Phi_{j,l}} |\Phi_{j,l}(\xi)\mathcal{F}f(\xi)|^2 d\xi. \]

Since \(\{2^{-3j/4}\exp(2\pi i U_{j,l} k\xi)\}_{k \in \mathbb{Z}^2} \) is an ONB of \(L^2(\text{supp } \Phi_{j,l}) \),
\[\int |\Phi_{j,l}(\xi)\mathcal{F}f(\xi)|^2 d\xi = \sum_{k \in \mathbb{Z}^2} |\int_{\mathbb{R}^2} 2^{-3j/4}\Phi_{j,l}(\xi)\mathcal{F}f(\xi) \exp(2\pi i U_{j,l} k\xi) d\xi|^2. \]

By Parseval we have
\[\int_{\mathbb{R}^2} \Phi_{j,l}(\xi)\mathcal{F}f(\xi) \exp(2\pi i U_{j,l} k\xi) d\xi = \int_{\mathbb{R}^2} T_{U_{j,l} k} \mathcal{F}^{-1} \Phi_{j,l}(x)f(x) dx. \]

Putting together we get
\[\|f\|_2^2 = \sum_{\lambda \in \Lambda} |\langle f, \varphi_\lambda \rangle|^2. \]