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Introduction

Introduction

We review basic results on determinantal varieties and show how to
apply methods of singularity theory of matrices to study their invariants
and geometry.

1 Essentially Isolated Determinantal Singularities (EIDS).
2 Singularity theory of matrices.
3 Invariants of Determinantal Singularities.
4 Nash transformation of an EIDS
5 Sections of EIDS.
6 Euler obstruction of EIDS.
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Introduction

Recent PhD. Thesis on Determinantal Varieties.

Miriam Silva Pereira, ICMC, 2010.
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-
22062010-133339/pt-br.php

Brian Pike, North Carolina University, 2010.
http://www.brianpike.info/thesis.pdf

Bruna Oréfice Okamoto, UFSCar, 2011
http://www.dm.ufscar.br/ppgm/attachments/article/179/download.pdf

Nancy Carolina Chachapoyas Siesquén, ICMC and Université Aix
Marseille, 2014.

•W. Ebeling and S. M. Gusein-Zade, On indices of 1-forms on
determinantal singularities, Singularities and Applications, 267, 119-
131, (2009).
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Introduction

Related recent new results on isolated determinantal singularities.

J. J. Nuño-Ballesteros, B. Oréfice Okamoto, J. N. Tomazella, The
vanishing Euler characteristic of an isolated determinantal
singullarity, Israel J. Math., 197 (2013), no. 1, 475-495.

J. J. Nuño-Ballesteros, B. Oréfice Okamoto, J. N. Tomazella,
Equisingularity of families of isolated determinantal singularities,
Math. Z. to appear.

T. Gaffney and A. Rangachev, Pairs of modules and determinantal
isolated singularities, arXiv : 1501.00201.

A. Frühbis-Krüger and M. Zach, On the vanishing topology of
isolated Cohen-Macaulay codimension 2 singularities, preprint.
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Essentially isolated determinantal singularities

Generic determinantal variety

Definition
Let Mm,n be the set of all m × n matrices with complex entries, and for
all t ≤ min{m,n} let

M t
m,n = {A ∈ Mm,n|rank(A) < t}.

This set is a singular variety, called generic determinantal variety.
1 M t

m,n has codimension (n − t + 1)(m − t + 1) in Mm,n

2 The singular set of M t
m,n is M t−1

m,n

3 M t
m,n = ∪i=1,...,t (M i

m,n\M i−1
m,n ), this partition is a Whitney

stratification of M t
m,n.
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Essentially isolated determinantal singularities

Determinantal varieties

Let F : U ⊂ CN → Mm,n. For each x , F (x) = (fij(x)) is a m × n matrix;
the coordinates fij are complex analytic functions on U.

Definition

A determinantal variety of type (m,n, t), in an open domain U ⊂ CN is
a variety X that satisfies:

X is the preimage of the variety M t
m,n. That is X = F−1(M t

m,n).

codim(X ) = (m − t + 1)(n − t + 1) in CN
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Essentially isolated determinantal singularities

Determinantal varieties

Example
Determinantal surface Let F be the following map:

F : C4 → M2,3

(x , y , z,w) 7→
(

z y x
w x y

)
Then X = F−1(M2

2,3) = V (zx − wy , zy − wx , y2 − x2), X is a surface
in C4 with isolated singularity at the origin.
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Essentially isolated determinantal singularities

Essentially Isolated Determinantal Singularities
(EIDS)

The Essential Isolated Determinantal Singularities (EIDS) were defined
by Ebeling and Gusein-Zade in [Proc. Steklov Inst. Math. (2009)].

Definition EIDS:

A germ (X ,0) ⊂ (CN ,0) of a determinantal variety of type (m,n, t) has
an essentially isolated determinantal singularity at the origin (EIDS) if
F is transverse to all strata M i

m,n \M i−1
m,n of the stratification of M t

m,n in a
punctured neighbourhood of the origin.

The singular set of an EIDS X = F−1(M t
m,n) is the EIDS F−1(M t−1

m,n ).

Maria Aparecida Soares Ruas Invariants of Determinantal Varieties Luminy, March 4, 2015 8 / 40



Essentially isolated determinantal singularities

Essentially Isolated Determinantal Singularities
(EIDS)

The Essential Isolated Determinantal Singularities (EIDS) were defined
by Ebeling and Gusein-Zade in [Proc. Steklov Inst. Math. (2009)].

Definition EIDS:

A germ (X ,0) ⊂ (CN ,0) of a determinantal variety of type (m,n, t) has
an essentially isolated determinantal singularity at the origin (EIDS) if
F is transverse to all strata M i

m,n \M i−1
m,n of the stratification of M t

m,n in a
punctured neighbourhood of the origin.

The singular set of an EIDS X = F−1(M t
m,n) is the EIDS F−1(M t−1

m,n ).

Maria Aparecida Soares Ruas Invariants of Determinantal Varieties Luminy, March 4, 2015 8 / 40



Essentially isolated determinantal singularities

Example
An ICIS is an EIDS of type (1,n,1)

Example
The determinantal variety represented by the matrix

N =

(
z y x
0 x y

)
is a curve in C3.

More generally, n × (n + 1) matrices with entries in ON give a
presentation of Cohen-Macaulay varieties of codimension 2
(Hilbert-Burch theorem ).
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Essentially isolated determinantal singularities

Deformations of EIDS

Deformations (in particular, smoothings) of determinantal singularities
which are themselves determinantal ones.

Definition

(Ebeling and Gusein Zade (2009)) An essential smoothing X̃ of the EIDS
(X ,0) is a subvariety lying in a neighbourhood U of the origin in CN

and defined by a perturbation F̃ : U → Mm,n of the germ F such that F̃
is transversal to all the strata M i

m,n \M i−1
m,n , with i ≤ t .

Example

For generic values of a,b, c, Ñ gives a smoothing of the curve in C3.

Ñ =

(
z y + a x + b
c x y

)
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Essentially isolated determinantal singularities

Isolated determinantal singularities (IDS)

Proposition

An EIDS (X ,0) ⊂ (CN ,0) of type (m,n, t), defined by
F : (CN ,0)→ (Mm,n,0) has an isolated singularity at the origin if
and only if N ≤ (m − t + 2)(n − t + 2).

(X ,0) has a smoothing if and only if N < (m − t + 2)(n − t + 2).

Example

F : CN → M2,3, N ≥ 6,F t M i
2,3, i = 1,2.

F (x) =

(
x1 x2 x3
x4 x5 x6

)
When N = 6, the singularity of X = F−1(M2

2,3) is isolated and X has no
smoothing.
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Matrices Singularity Theory

Matrices Singularity Theory

The methods of singularity theory apply both to real and complex
matrices.

Arnol’d (1971), square matrices.
Bruce (2003), simple singularities of symmetric matrices.
Bruce and Tari (2004), simple singularities of square matrices.
Haslinger (2001), simple skew-symmetric.
Frühbis-Krüger (2000) and Frühbis-Krüger and Neumer (2010),
Cohen-Macaulay codimension 2 simple singularities.
Goryunov and Mond (2005), Tjurina and Milnor numbers of
square matrices.

M. Silva Pereira (2010), singularity theory of general n ×m
matrices.
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Matrices Singularity Theory

A group G acting on the space of map-germs
F : (CN ,0)→ MM,n

R = {h : (KN ,0)→ (KN ,0),germs of analytic diffeomorphisms}

H = GLm(ON)×GLn(ON) and G = R×H (semi-direct product)

Definition

Given two matrices F1(x) = (f 1
ij (x))m×n and F2(x) = (f 2

ij (x))m×n, we
say that

F1 ∼ F2 if ∃ (φ,R,L) ∈ G such that F1 = L−1(φ∗F2)R.

Proposition
If F1 ∼ F2 then the corresponding determinantal varieties
X t

1 = F−1
1 (M t

m,n) and X t
2 = F−1

2 (M t
m,n), 1 ≤ t ≤ m are isomorphic.
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Matrices Singularity Theory

The group G is a geometric subgroup of the contact group K. Hence
the infinitesimal methods of singularity theory applies.

Definition
F : U → Mm,n is G-stable if TeG(F ) = Θ(F ).

The above condition holds if and only if F is transversal to the
canonical stratification of the space Mm,n.
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Matrices Singularity Theory

Definition

The germ F : (CN ,0)→ Mm,n, F (x) = (fij(x)) is k − G-finitely
determined if for every G : (CN ,0)→ Mm,n, G(x) = (gij(x)) such that
jk fij(x) = jkgij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ n, then G ∼ F .

Theorem
( M.S. Pereira, PhD thesis) F is G-finitely determined if and only if the
Tjurina number of F

τ(F ) = dimK
Θ(F )

TeG(F )

is finite

In this case, F has a versal unfolding with τ -parameters.
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Matrices Singularity Theory

Theorem
( M.S. Pereira, PhD thesis) (Geometric criterion of finite determinacy) F
is finitely G-determined if and only if there exists a representative
F : U → Mm,n such that for all x 6= 0 in U, rankF (x) + 1 = i , then F is
transversal to M i

m,n at x .

F is G-finitely determined if and only if X = F−1(M t
m,n) is an EIDS for

all t ≤ min{m,n}.

A stable perturbation F̃ of F defines an essential smoothing
X̃ = F̃−1(Mm

m,n) of X .
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Matrices Singularity Theory

Example
Let

Ak =

(
x y z
w zk x

)
, ∀ k ≥ 1.

This is the first normal form of the classification of simple
Cohen-Macaulay singularities of codimension 2 of A. Fübhis-Kruger
and A. Neumer in [Comm. Alg. 38, 454-495, (2010)].

The surface Xk ⊂ C4 associated to Ak is defined by the ideal〈
xzk − yw , x2 − zw , xy − zk+1〉 .

The versal unfolding of Fk is

F̃k (x , y , z,w ,u0,u1, . . . ,uk ) =

(
x y z
w zk + Σk−1

0 uiz i x + uk

)
,

τ(Fk ) = k + 1.

For generic values u of the parameters, F̃u defines X̃u which is a
smoothing of X .

Maria Aparecida Soares Ruas Invariants of Determinantal Varieties Luminy, March 4, 2015 17 / 40



Matrices Singularity Theory

Example
Let

Ak =

(
x y z
w zk x

)
, ∀ k ≥ 1.

This is the first normal form of the classification of simple
Cohen-Macaulay singularities of codimension 2 of A. Fübhis-Kruger
and A. Neumer in [Comm. Alg. 38, 454-495, (2010)].

The surface Xk ⊂ C4 associated to Ak is defined by the ideal〈
xzk − yw , x2 − zw , xy − zk+1〉 .

The versal unfolding of Fk is

F̃k (x , y , z,w ,u0,u1, . . . ,uk ) =

(
x y z
w zk + Σk−1

0 uiz i x + uk

)
,

τ(Fk ) = k + 1.

For generic values u of the parameters, F̃u defines X̃u which is a
smoothing of X .

Maria Aparecida Soares Ruas Invariants of Determinantal Varieties Luminy, March 4, 2015 17 / 40



Matrices Singularity Theory

Example
Let

Ak =

(
x y z
w zk x

)
, ∀ k ≥ 1.

This is the first normal form of the classification of simple
Cohen-Macaulay singularities of codimension 2 of A. Fübhis-Kruger
and A. Neumer in [Comm. Alg. 38, 454-495, (2010)].

The surface Xk ⊂ C4 associated to Ak is defined by the ideal〈
xzk − yw , x2 − zw , xy − zk+1〉 .

The versal unfolding of Fk is

F̃k (x , y , z,w ,u0,u1, . . . ,uk ) =

(
x y z
w zk + Σk−1

0 uiz i x + uk

)
,

τ(Fk ) = k + 1.

For generic values u of the parameters, F̃u defines X̃u which is a
smoothing of X .

Maria Aparecida Soares Ruas Invariants of Determinantal Varieties Luminy, March 4, 2015 17 / 40



Matrices Singularity Theory

Example
Let

Ak =

(
x y z
w zk x

)
, ∀ k ≥ 1.

This is the first normal form of the classification of simple
Cohen-Macaulay singularities of codimension 2 of A. Fübhis-Kruger
and A. Neumer in [Comm. Alg. 38, 454-495, (2010)].

The surface Xk ⊂ C4 associated to Ak is defined by the ideal〈
xzk − yw , x2 − zw , xy − zk+1〉 .

The versal unfolding of Fk is

F̃k (x , y , z,w ,u0,u1, . . . ,uk ) =

(
x y z
w zk + Σk−1

0 uiz i x + uk

)
,

τ(Fk ) = k + 1.

For generic values u of the parameters, F̃u defines X̃u which is a
smoothing of X .
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Invariants of EIDS

Singular fibration of an EIDS

F : (CN ,0)→ Mm,n, (X ,0) = F−1(M t
m,n)

F̃ : W ⊂ CN×Cs → Mm,n, F̃ (x ,0) = F (x), F̃ t {M i
m,n\M i−1

m,n}, X = F̃−1(M t
m,n)

X ⊂ W ⊂ CN × Cs

↓ π
B(F ) ⊂ Cs

,

where B(F ) is the bifurcation set.

For u ∈ Cs \ B(F ), F̃u defines X̃u which is an essential smoothing of X .
The generic fibre X̃u is well defined.
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Invariants of EIDS

Invariants of EIDS

Definition
(Damon and Pike [Geom. Topol., 18(2) (2014)], Ebeling and Gusein-Zade
(2009)) The singular vanishing Euler characteristic of X , is defined as

χ̃(X ) = χ̃(X̃u) = χ(X̃u)− 1.

(Nuño-Ballesteros, Oréfice-Okamoto and Tomazella [Israel J. Math. 197
(2013), 475-495.]) When X̃u is smooth, vanishing Euler characteristic of
X is

ν(X ) = (−1)dim(X)(χ(X̃u)− 1).
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Invariants of EIDS

Let X and X be as above, dim(X ) = d .

Definition: The d-polar multiplicity, (Gaffney [Top. (1993)])
Let p : X → C, with isolated singularity. Let

π : X ⊂ CN × C→ C,

π−1(0) = X , p̃ : CN × C→ C linear projection, p̃(x ,0) = p(x), and for
all t 6= 0, p̃t (.) is a generic deformation of p.
Let

Pd (X , π,p) = Σ(π, p̃)|Xreg

be the relative polar variety of X relative to π and p.
Define

md (X , π,p) = m0(Pd (π,p)).
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Invariants of EIDS

In general, md (X , π,p) depends on the choices of X and p, but when X
is an EIDS, md depends only on X and p. Furthermore, if p is a generic
linear embedding, md is an invariant of the EIDS X , denoted by md (X ).

Proposition:

Let X = F−1(Mm,n) and X̃ its essential smoothing. Let p : X → C be a
function with isolated singularity in X . Then

md (X ,p) = # non-degenerated critical points of p̃t |(X̃t )reg,

where p̃t is a generic perturbation of p (Morsification), and X̃t an
essential smoothing of X . When p is a generic linear function defined
on X , we write md (X ,p) = md (X ).
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Nash transformation

Nash transformation

Let X be a d− dimensional analytic complex variety in CN .

Gr(d ,N) the Grassmannian of d-subspaces in CN .

Let π : CN ×Gr(d ,N)→ CN be the projection to the CN .

On the regular part of X , we have the Gauss map defined by:

s : Xreg → CN ×Gr(d ,N)
x 7→ (x ,TxXreg)
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Nash transformation

Definition

The Nash transformation X̂ of X is the closure in CN ×Gr(d ,N) of the
image of s, i.e.,

X̂ = {(x ,W )|x ∈ Xreg ,W = TxXreg}.

If x ∈ X is a singular point, then the fibre over x :
ν−1(x) = {(x ,T )/T = lim

xn→x
(TxnX ), xn ∈ Xreg}, ν = π|X̂
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Nash transformation

Proposition

(Arbarello, Cornalba, Griffiths and Harris) The Nash transformation M̂ t
m,n

of M t
m,n,1 ≤ t ≤ m is smooth.
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Nash transformation

Let X be an EIDS of type (m,n, t) in U ⊂ CN . The Nash transformation
X̂ is the fibre product M̂ t

m,n ×M t
m,n

X of M̂ t
m,n and X over M t

m,n.

X̂

X M̂ t
m,n

M t
m,n

�
�
�	

Π @
@
@R

?

@
@
@RF |X

�
��	 ν

If F is transversal to the canonical stratification in Mm,n, then X̂ is a
resolution of X .
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Nash transformation

Theorem

( Chachapoyas-Siesquen, PhD thesis) Let X = F−1(M t
m,n) ⊂ CN be an

EIDS, defined by F : U ⊂ CN → Mm,n.

If F is transversal to all the limits of the tangent spaces to the strata of
M t

m,n then X̂ is smooth.

Questions
Does a finite iteration of Nash transformations resolve the singularities
of an EIDS X?

Describe the singularities of X̂ .
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Nash transformation

Anne Frühbis-Krüger and Mathias Zach in [On the vanishing topology
of isolated Cohen-Macaulay Codimension 2 singularities],extended to
Cohen-Macauly codimension singularities a technique called Tjurina
modification, previously used by Tjurina for surfaces.

Using this tool, they relate a given Cohen-Macaulay Codimension 2
singularity to a local complete intersection scheme.

They characterize a class of X ⊂ C5 threefold Cohen-Macaulay
Codimension 2 singularities whose Tjurina transformation Y only has
isolated complete intersection singularities.

Maria Aparecida Soares Ruas Invariants of Determinantal Varieties Luminy, March 4, 2015 27 / 40



Nash transformation

Anne Frühbis-Krüger and Mathias Zach in [On the vanishing topology
of isolated Cohen-Macaulay Codimension 2 singularities],extended to
Cohen-Macauly codimension singularities a technique called Tjurina
modification, previously used by Tjurina for surfaces.

Using this tool, they relate a given Cohen-Macaulay Codimension 2
singularity to a local complete intersection scheme.

They characterize a class of X ⊂ C5 threefold Cohen-Macaulay
Codimension 2 singularities whose Tjurina transformation Y only has
isolated complete intersection singularities.

Maria Aparecida Soares Ruas Invariants of Determinantal Varieties Luminy, March 4, 2015 27 / 40



Nash transformation

Anne Frühbis-Krüger and Mathias Zach in [On the vanishing topology
of isolated Cohen-Macaulay Codimension 2 singularities],extended to
Cohen-Macauly codimension singularities a technique called Tjurina
modification, previously used by Tjurina for surfaces.

Using this tool, they relate a given Cohen-Macaulay Codimension 2
singularity to a local complete intersection scheme.

They characterize a class of X ⊂ C5 threefold Cohen-Macaulay
Codimension 2 singularities whose Tjurina transformation Y only has
isolated complete intersection singularities.

Maria Aparecida Soares Ruas Invariants of Determinantal Varieties Luminy, March 4, 2015 27 / 40



Isolated determinantal singularities

Isolated Determinantal Singularities admitting
smoothing: N < (m-t+2)(n-t+2)

If X ⊂ CN is a normal variety admitting smoothing, then b1(Xu) = 0
(Greuel and Steenbrink [Proc. Symp. Pure Math. 40,(1983).])
Determinantal isolated singularities are normal singularities, so this
holds for them.

Theorem
(Nuno-Ballesteros, Oréfice-Okamoto and Tomazella [Israel J. 2013]) Let
p : CN → C be a generic linear function and X̃ an essential smoothing
of X . Then

#Σ(p|X̃ ) = ν(X ,0) + ν(X ∩ p−1(0),0),

where #Σ(p|X̃ ) denotes the number of critical points of p|X̃ .

Maria Aparecida Soares Ruas Invariants of Determinantal Varieties Luminy, March 4, 2015 28 / 40



Isolated determinantal singularities

Determinantal surfaces

M. S. Pereira and M. Ruas [Math. Scand., 2014], Nuno-Ballesteros,
Oréfice-Okamoto and Tomazella [Israel J., 2013], Damon and Pike
[Geom. Topol. 2014].

Milnor number of determinantal surface in CN ,
The Milnor number of X at 0, denoted by µ(X ), is defined as
µ(X ) = b2(Xu), where Xu is the generic fiber of X and b2(Xu) is the 2
-th Betti number.
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Isolated determinantal singularities

Le-Greuel type formula

Proposition: [Math. Scand. 2014], [Israel J. 2013], [Geom. Top.
2014]

Let (X ,0) ⊂ (CN ,0) be 2-dimensional IDS admitting smoothing. Let
p : (CN ,0)→ (C,0) be a generic linear function on X . Then,

µ(X ) + µ(X ∩ p−1(0)) = m2(X ),

where m2(X ) is the second polar multiplicity of X .

M.S. Pereira’conjecture, Ph. Thesis (2010)
([Math. Scand. 2014], [Geom. Top. 2014])
If X 2 ⊂ C4 is a simple 2-dimensional IDS, then µ(X ) + 1 = τ(X )

Question
Does this formula hold for all 2-dimensional IDS ?
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Isolated determinantal singularities

Cohen-Macaulay cod 2 threefold singularities.

Damon and Pike, Geom. Top. 18, 2014: describe a method to
compute the difference of Betti numbers b2(X̃ )− b3(X̃ ) for
isolated Cohen- Macaulay 3-fold singularities X in C5.

Frühbis-Krüger and Zach, 2015: use the Tjurina modification to
compute the Betti numbers b2 and b3 of the essential smoothing
of a 3-fold singularity.

Theorem (Frühbis-Krüger and Zach)

If the singularities of the Tjurina modification Y of a 3-fold
Cohen-Macaulay cod. 2 singularity X are isolated complete
intersections, then

b0(X ) = 1, b1(X ) = 0, b2(X ) = 1, b3(X ) = r ,

where r is the sum of Milnor numbers of the singularities of Y .
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Isolated determinantal singularities

Sections of Determinantal Varieties

Definition

The hyperplane H ⊂ CN , given by the kernel of the linear function
p : CN → C is called general with respect to X at 0 if H is not the limit
of tangent hyperplanes to X at 0.

Example: Swallowtail
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Isolated determinantal singularities

Definition

Let {Vi} be a stratification of X d ⊂ CN . The hyperplane H ⊂ CN is
called strongly general at the origin if H is general and there exists a
neighbourhood U of 0 such that for all strata Vi of X, with 0 ∈ V i , then
H t Vi at x, ∀ x ∈ U\{0}.

Proposition

[Chachapoyas-Siesquen] Let (X ,0) ⊂ (CN ,0) be a d- dimensional EIDS
of type (m,n, t). If H ⊂ CN is a strongly general hyperplane then
X ∩ H ⊂ CN−1 is a d − 1-dimensional EIDS of the same type.
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Isolated determinantal singularities

Minimality of Milnor number

Let X be a d- dimensional complex variety. A hyperplane H is general
if and only if µ(X ∩ H) is minimum.

1 B. Teissier [Astérisque, 7 et 8 , (1973)], Henry and Le Dung Trang,
[LNM, 482 (1975)], the case of hypersurfaces.

2 T. Gaffney [Travaux en Cours, 55 (1997)], ICIS.
3 J. Snoussi [Comment. Math. Helv. 76 (1), (2001)], normal

surfaces in CN .
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Isolated determinantal singularities

Minimality of Milnor number

Similar result holds for 3-dimensional EIDS.

Theorem

(Chachapoyas-Siésquen )Let X ⊂ CN be a 3- dimensional determinantal
variety with isolated singularity and let H be a hyperplane in CN .
Suppose that X ∩ H has an isolated singular point, then the following
conditions are equivalent.

H is general to X at 0.
µ(X ∩ H) is minimum and µ(X ∩ H ∩ H ′) is minimum for all
hyperplane H ′ general to X and to X ∩ H.
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Isolated determinantal singularities

Sections of EIDS

The following result is a generalization of a result of Lê Dung Trang
[Singularity theory, World Sci. Publ., Hackensack, NJ, 2007.] We use
the Lê-Greuel formula for surfaces.

Theorem

Let X ⊂ CN be a d- dimensional EIDS. Let H, H ′ be hyperplanes in CN

strongly general to (X ,0) at the origin. Then there exist P and P ′,
P ⊂ H and P ′ ⊂ H ′ such that codim P = codim P ′ = d − 2, and the
determinantal surfaces X ∩ P and X ∩ P ′ satisfy the following
conditions:

a) X ∩ P and X ∩ P ′ have isolated singularity.
b) X ∩ P and X ∩ P ′ admit smoothing.
c) µ(X ∩ P) = µ(X ∩ P ′).

Maria Aparecida Soares Ruas Invariants of Determinantal Varieties Luminy, March 4, 2015 36 / 40



Euler obstruction

Euler obstruction

Theorem: (Brasselet, D. T. Lê, and J. Seade,[Topology 39, (2000)])
Let (X , 0) be a germ of an equidimensional complex analytic space in CN . Let {Vi} be
a Whitney stratification of a small representative X of (X , 0). Then for a generic
complex linear form l : CN → C, and for ε and r 6= 0 sufficiently small, the following
formula for the Euler obstruction of (X , 0) holds,

Eu0(X ) =
∑

i

χ(Vi ∩ Bε ∩ l−1(r))EuVi (X ),

where the sum is over strata Vi such that 0 ∈ V i and EuVi (X ) is the Euler obstruction
of X in any point of Vi .
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Euler obstruction

Euler obstruction of an EIDS:
N ≤ (m − t + 3)(n − t + 3)

(N. Chachapoyas-Siesquen’s PhD. Thesis (2014) )

Let X = F−1(M t
m,n) be an EIDS, defined by F : CN → Mm,n. If

N ≤ (m − t + 3)(n − t + 3) then the singular part ΣX = F−1(M t−1
m,n ) is

an IDS . The variety X admits 3 strata {V0,V1,V2}, V0 = {0},
V1 = ΣX\{0}, V2 = Xreg . Then, we have

Eu0(X ) = χ(ΣX ∩ l−1(r) ∩ Bε)(χ(LV1)− 1) + χ(X ∩ l−1(r) ∩ Bε).

where l : CN → C is a generic linear projection centered at 0, LV1 is the
complex link of the stratum V1 in X and Bε is the ball of radius ε in CN .
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Euler obstruction

Euler obstruction, F : CN → M2,3

Proposition: (N. Chachapoyas-Siesquen’s PhD. Thesis )

Let X = F−1(M2
2,3) ⊂ CN be an EIDS defined by the function

F : CN → M2,3.

If N = 6, then

Eu0(X ) = χ(X ∩ l−1(r)) = b2(X ∩ l−1(r))− b3(X ∩ l−1(r)) + 1.

If N ≥ 7, then

Eu0(X ) = (−1)N−7µ(ΣX ∩ l−1(0)) + χ̃(X ∩ l−1(0)) + 2.

Proposition: (N. Chachapoyas-Siesquen’s PhD. Thesis )

If F has corank 1, N ≥ 7, then

Eu0(X ) = 2.
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Euler obstruction

Thanks !
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