Wavelets, Shearlets and Geometric Frames: Part II

Philipp Grohs ${ }^{1}$ and Axel Obermeier²

October 22, 2014

[^0]
Outline

3. Curvelets, shearlets and parabolic molecules
4. Related systems
5. Applications

RECALL...

Definition (Donoho (2001))
The set \mathcal{E} of cartoon images is given by

$$
\mathcal{E}:=\left\{f=f_{0}+\chi_{B} f_{1}\right\},
$$

where $f_{0}, f_{1} \in C^{2}\left([0,1]^{2}\right)$ and χ_{B} is the indicator function of $B \subset[0,1]^{2}$ with C^{2} boundary.

Recall benchmark approximation rate for \mathcal{E} is N^{-1} !

Limitations of Wavelets

Theorem

We have that

$$
s^{*}\left(\mathcal{E}, \mathcal{W}^{2 D}(\varphi, \psi, \alpha)\right)=\frac{1}{2}
$$

This is one magnitude short of the optimal rate N^{-1}.
Can we find better dictionaries??

GOAL

Construct (tight) frame for $L^{2}\left(\mathbb{R}^{2}\right)$ such that for all $f \in \mathcal{E}$ we have

$$
\left\|f-f_{N}\right\|_{2} \lesssim N^{-1}
$$

where f_{N} is the reconstruction from the N biggest frame coefficients.
3. Curvelets, Shearlets and
Parabolic Molecules

Curvelets: A first Breakthrough

Main Idea: Wavelets are supported in isotropic quadrilaterals of width $\sim 2^{j}$. Too many such quadrilaterals are needed to cover the singularity curve.
\leadsto basis functions supported in an anisotropic rectangle of length $\sim 2^{j / 2}$ and width $\sim 2^{j}$. If we also allow rotations along (say) $2^{j / 2}$ equispaced angles at scale j we might have a chance.

Curvelets: A first Breakthrough

Inspired by this idea we seek to construct systems of the form

$$
\varphi_{j, l, k}(x):=2^{3 / 4} \psi\left(D_{2 j} R_{\theta_{j}, l} x-k\right),
$$

where

$$
D_{a}:=\operatorname{diag}(a, \sqrt{a}), R_{\theta}=\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
\sin (\theta) & -\cos (\theta)
\end{array}\right)
$$

and

$$
\theta_{j, 1} \sim 2^{-j / 2} / 2 \pi, \quad I=-2^{j / 2}, \ldots, 2^{j / 2} .
$$

How to realize such a system?

Curvelets: A first Breakthrough

Start with decomposition of Fourier space into `parabolic wedges' of aspect ratio 'length \sim width $^{2 \prime}$ (eg. length $\sim 2^{j}$, width $\sim 2^{j / 2}$) with associated partition-of-unity
$\left\{V_{j, 1}\right\}_{j \in \mathbb{N},} l \in\left\{-2^{1 / 2}, \ldots, 2^{1 / 2}\right\}$, s.t.

$$
\sum_{j, l}\left|V_{j, l}(\xi)\right|^{2}=1
$$

Curvelets: A first Breakthrough

Build dictionary by modulating the partition functions:
$\hat{\varphi}_{j, l, k}(\xi):=2^{-3 j / 4} \exp \left(2 \pi i R_{\theta_{j, l}^{-1}}^{-1} D_{2^{-j}} k \xi\right) V_{j, l}(\xi), \quad j \in \mathbb{N}, I \in\left\{-2^{j / 2}, \ldots, 2^{j}\right.$.
where

$$
D_{a}:=\operatorname{diag}(a, \sqrt{a}), R_{\theta}=\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
\sin (\theta) & -\cos (\theta)
\end{array}\right)
$$

and

$$
\theta_{j, l} \sim 2^{-j / 2} 22 \pi, \quad I=-2^{j / 2}, \ldots, 2^{j / 2} .
$$

We collect all indices in the index set Λ and get dictionary $\left\{\varphi_{\lambda}\right\}_{\lambda \in \lambda}$.

Curvelets: A first Breakthrough

Space-picture:
$\varphi_{j, l, k}:=2^{-3 j / 4} T_{j, l, k} \mathcal{F}^{-1} V_{j, l}, \quad j \in \mathbb{N}, I \in\left\{-2^{j / 2}, \ldots, 2^{j / 2}\right\}, k \in \mathbb{Z}^{2}$,
where

$$
\begin{gathered}
T_{y} f(\cdot):=f(\cdot-y), \\
U_{j, 1}:=R_{\theta_{j, 1}-1}^{-1} D_{2-J},
\end{gathered}
$$

j : scale, l: angle, k : location.

Curvelets: A first Breakthrough

Theorem
The system $\left\{\varphi_{\lambda}\right\}_{\lambda \in \Lambda}$ constitutes a Parseval frame for $L^{2}\left(\mathbb{R}^{2}\right)$, i.e.

$$
\|f\|_{L^{2}}^{2}=\sum_{\lambda \in \Lambda}\left|\left\langle f, \varphi_{\lambda}\right\rangle\right|^{2}
$$

and

$$
\begin{equation*}
f=\sum_{\lambda \in \Lambda}\left\langle f, \varphi_{\lambda}\right\rangle \varphi_{\lambda} . \tag{1}
\end{equation*}
$$

Curvelets: A first Breakthrough

Curvelets are...

Curvelets: A first Breakthrough

...essentially waveforms whose essential support satisfies 'width ~ length ${ }^{2}$....

Curvelets: A first Breakthrough

...oscillatory across the shorter edge and low-pass along the longer edge...

Curvelets: A first Breakthrough

Curvelets: A first Breakthrough

Curvelets: A first Breakthrough

Anisotropic Scaling

Important: In contrast to 2D-wavelets which have essential support in quadrilaterals

$$
2^{-j}\left[k_{1}-a, k_{1}+a\right] \times\left[k_{2}-a, k_{2}+a\right],
$$

the supports of curvelets obeys a parabolic scaling law

$$
\text { length } \sim 2^{j} \text { and width } \sim 2^{j / 2}
$$

Heuristic: Isotropic Dilation vs. Anisotropic Dilation

Using elements satisfying parabolic scaling relation length $\sim 2^{-j / 2}$, width $\sim 2^{-j}$

Heuristic: Isotropic Dilation vs. Anisotropic Dilation

we can cover the singularity curve with $\sim 2^{j / 2}$ elements, as opposed to $\sim 2^{j}$ for isotropic methods (such as wavelets)

Heuristic: Isotropic Dilation vs. Anisotropic Dilation

so if we cut at scale J we only need $\sim 2^{J / 2}$ coefficients

Heuristic: Isotropic Dilation vs. Anisotropic Dilation

cartoon functions are in the Sobolev space $H^{1 / 2}$, therefore, cutting of at scale J will induce an error of order $2^{-J / 2}$

Heuristic: Isotropic Dilation vs. Anisotropic Dilation

and we arrive at the desired rate.

Optimality of Curvelets

Theorem (Candès-Donoho (2004))
Curvelets are optimal for cartoon-images, e.g.,

$$
s^{*}(\mathcal{E}, \text { Curvelef })=s^{*}(\mathcal{E})=1 .
$$

Actual proof much more complicated.

SHEARLETS

- So far theoretical construction
- Next step: construction of fast algorithms
- © How implement rotations for digital data on a grid?
- Replace rotation by shearing!

Shearlets

Index set
$\Lambda^{\sigma}:=\left\{(\varepsilon, j, I, k) \in \mathbb{Z}_{2} \times \mathbb{Z}^{4}: \varepsilon \in\{0,1\}, j \geq 0, I=-2^{\left\lfloor\frac{\lfloor }{2}\right\rfloor}, \cdots, 2^{\left\lfloor\frac{1}{2}\right\rfloor}\right\}$,
and the shearlet system

$$
\Sigma:=\left\{\sigma_{\lambda}: \lambda \in \Lambda^{\sigma}\right\},
$$

with

$$
\begin{aligned}
& \sigma_{(\varepsilon, 0,0, k)}(\cdot)=\varphi(--k), \quad \sigma_{(\varepsilon, j, l, k)}(\cdot)=2^{3 j / 4} \psi^{\varepsilon}\left(D_{2 \mid}^{\varepsilon} S_{l, j}^{\varepsilon} \cdot-k\right), \quad j \geq 1, \\
& D_{a}^{0}=D_{a}, D_{a}^{1}:=\operatorname{diag}(\sqrt{a}, a), S_{l, j}:=\left(\begin{array}{cc}
1 & \left.12^{-}-j / 2\right] \\
0 & 1
\end{array}\right), \\
& S_{l, j}^{1}=\left(S_{l, j}^{0}\right)^{\top} . \\
& \text { supp } \mathcal{F} \varphi \subset[-2,2]^{2}, \\
& \operatorname{supp}^{\top} \psi^{0} \subset([-4,-4] \cup[1,4]) \times[-2,2], \\
& \text { supp } \mathcal{F} \psi^{1} \subset[-2,2] \times([-4,-1] \cup[1,4])
\end{aligned}
$$

SHEARLETS

Theorem (Guo-Labate (2008))
With a bandlimited shearlet frame Σ we have

$$
s^{*}(\mathcal{E}, \Sigma)=s^{*}(\mathcal{E})=1 .
$$

SHEARLETS

- Shearing better adapted to data sampled on digital grid
- Fast algorithms exist
- Also compactly supported shearlet frames available (Kutyniok et. al. (2012))
- Software and publications available at www.shearlet.org
- More general concept: parabolic molecules encompass all known constructions and yield simple proofs of optimal cartoon approximation (G-Kutyniok (2014)).

Literature

- Candès, Dohoho. New tight frames of curvelets and optimal representations of objects with piecewise C^{2} singularities. Communications in Pure and Applied Mathematics (2004).
- Kutyniok, Labate (Eds.). Shearlets: Multiscale analysis for multivariate data. Birkhäuser/Springer (2012).
- Grohs, Kutyniok. Parabolic Molecules. Foundations of Computational Mathematics (2014).

4. Related Systems

Different Anisotropies

Consider dilation matrix $D_{a}^{\beta}:=\operatorname{diag}\left(a, a^{\beta}\right)$. Build frames based on the principle

$$
\varphi_{j, l, k}(x):=2^{j(1+\beta) / 2)} \psi\left(D_{2 j}^{\beta} R_{\theta_{j, 1}} x-k\right),
$$

where

$$
\theta_{j, l} \sim 2^{-j(1-\beta)} \mid 2 \pi, \quad I=-2^{j / 2}, \ldots, 2^{j(1-\beta)} .
$$

$\beta=1$ Wavelets
$\beta=1 / 2$ Curvelets, shearlets, parabolic molecules
$\beta=0$ Ridgelets
$\leadsto \beta$-molecules (G -Keiper-Kutyniok-Schaefer (2014))

Fourier Partitionings

Left to right: Fourier partitioning associated to wavelets, curvelets, ridgelets.

Approximation Results

New signal class of generalized cartoon-images

$$
\mathcal{E}^{\alpha}:=\left\{f=f_{0}+\chi_{B} f_{1}\right\}
$$

where $f_{0}, f_{1} \in C^{\alpha}\left([0,1]^{2}\right)$ and χ_{B} is the indicator function of $B \subset[0,1]^{2}$ with C^{2} boundary.
Theorem (G-Keiper-Kutyniok-Schaefer (2014))
Frames of β-molecules are optimal for \mathcal{E}^{α} if $\beta=\alpha^{-1}$ and
$\beta \in[1 / 2,1]$.

Line Singularities

Signal class

$$
\mathcal{L}^{\alpha}=\left\{f \in C^{\alpha}, \text { apart from line discontinuities }\right\} .
$$

Theorem (CANDÈS (1999),
G-Keiper-Kutyniok-Schaefer (2014))
0-molecules (aka ridgelets) are optimal for the signal class \mathcal{L}^{α}, e.g.

$$
s^{*}\left(\mathcal{L}^{\alpha}, \text { ridgelets }\right)=s^{*}\left(\mathcal{L}^{\alpha}\right)=\alpha / 2
$$

Literature

- Candès. Ridgelets and the representation of mutilated Sobolev functions. SIAM Journal on Mathematical Analysis (2001).
- Grohs, Keiper, Kutyniok and Schaefer. Cartoon Approximation with α-Curvelets. preprint (2014), available from
www.math.ethz.ch/~pgrohs/research.
- Grohs, Keiper, Kutyniok and Schaefer. α-Molecules. preprint (2014), available from

```
www.math.ethz.ch/~pgrohs/research.
```


5. Some Applications

Morphological Component Analysis

Goal: Separate Signal into curvelike and pointlike components.

Morphological Component Analysis

4 Wavelets are optimal for point-like features, curvelets/shearlets/parabolic molecules are optimal for curve-like features

For wavelet dictionary $\mathcal{W}=\left(\psi_{j, k}\right)$ and curvelet frame $\Gamma=\left(\gamma_{j, k, l}\right)$ consider combined dictionary $\mathcal{W} \cup \Gamma$ and, given

$$
f=f_{\text {curv }}+f_{\text {point }}
$$

seek the sparsest representation

$$
f=\underbrace{\sum_{j k} c_{j k} \psi_{j, k}}_{\hat{f}_{\text {point }}}+\underbrace{\sum_{j, k, l} d_{j, k, l} \gamma_{j, k, l}}_{\hat{f}_{\text {curv }}} .
$$

- Actual algorithm uses bandpass filter on $f=\sum_{i} P_{i} f$ and solves, for each frequency part
- Under certain conditions it holds that

$$
\lim _{i \rightarrow \infty} \frac{\left\|\hat{f}_{\text {point }}^{\prime}-P_{i} f_{\text {point }}\right\|+\left\|\hat{f}_{\text {curv }}^{i}-P_{i} f_{\text {curv }}\right\|}{\left\|P_{i} f_{\text {point }}\right\|+\left\|P_{i} f_{\text {curv }}\right\|}=0 .
$$

- Donoho, Kutyniok. Microlocal Analysis of the Geometric Separation Problem. Communications in Pure and Applied Mathematics (2012).
- Software available at www. shearlab.org
- Link between Harmonic Analysis and Compressed Sensing

Solving Transport PDEs

Equations of the form
$s \cdot \nabla u(x, s)+\kappa u(x, s)=f(x, s)+Q(u)(x, s), \quad(x, s) \in \Omega \times \mathbb{S}^{d-1}$,
where $\Omega \subset \mathbb{R}^{d}, \kappa$ absorption coefficient, f source term and $Q(u)$ scattering operator (for instance
$\left.Q(u)(x, s)=\int_{\mathbb{S}^{d-1}} K(s, t) u(x, t) d t\right)+$ inflow BCs.
Stationary distribution of a phase-space density u whose evolution is governed by free transport, absorption, external sources and interaction with the surrounding medium via a scattering operator. Examples include radiative transfer (simulation of dense gas at very high temperatures) or socio-economic processes.

Kinetic Transport Equations

Difficulties in the numerical solution:

1. 'Curse of dimensionality': Problem is 2d-1-dimensional
2. Line singularities transported along rays
3. The equation is not H^{1}-elliptic - wavelet and FE discretizations do not lead to well-conditioned linear systems
4. Anisotropy - anisotropic meshes cannot be used since they need to be combined for different directions.
Goal: Adaptive approximation schemes which operate in optimal computational complexity (accuracy vs. number of flops).

Question: What is the right discretization for such equations?

Solving Transport PDEs

Solution of

$$
s \cdot \nabla u+\kappa u=f
$$

may be singular along lines \leadsto use ridgelets for discretization in space!

Solving Transport PDEs

Theorem (G,Obermeier (2014))
Let u be a solution of $s \cdot \nabla u+\kappa u=f$ which is C^{n} apart from a line discontinuity in direction s. Then there exists a computable ridgelet-based algorithm SOLVE which computes in N flops an approximation $u_{N} \in H^{1, s}:=\left\{v \in L^{2}: s \cdot \nabla v \in L^{2}\right\}$ with the approximation rate

$$
\left\|u-u_{N}\right\|_{H^{1, s}} \lesssim N^{-(n-1) / 2}
$$

This rate is optimal.

Solving Transport PDEs

Numerical approximation computed by SOLVE converges exponentially, even if line discontinuities are present in the solution!
Compare ridgelet error $\sim \exp \left(-\gamma N^{\delta}\right)$ vs. error at least
$\sim N^{-1 / 2}$ with conventional discretizations (wavelets, FEM)!

Solving Transport PDEs

Back to full kinetic equation with scattering $Q(u)(x, s)=\int_{\mathbb{S}^{1}} u(x, s) d s$

red: source term, blue absorption (scattering around obstacle) Quantity of interest: Incident radiation $\int_{\mathbb{S}^{1}} u(x, s) d s$.

Solving Transport PDEs

Solution computed using ridgelets in space, together with sparse collocation scheme, breaking curse of dimensionality.

Solving Transport PDEs

- First provably convergent adaptive solver for transport PDEs
- Etter, Grohs, Obermeier. FFRT-A Fast Finite Ridgelet Transform for Radiative Transport. SIAM Journal on Multiscale Modeling and Simulation (2015).
Grohs, Obermeier. Optimal Adaptive Ridgelet Schemes for Linear Transport Equations. (2014), available from
www.math.ethz.ch/~pgrohs/research.
- Software package available at www.math.ethz.ch/~pgrohs/research/FFRT.
- Link between Harmonic Analysis and Numerics

Classification of Singularities

Separate edges, corners and smooth regions

Source: D. Labate
Shearlet coefficients have different decay rates for different types of singularities.

Classification of Singularities

Theorem (Guo-Labate (2008))
With $a=2^{-j}$, the scale we have

Classification of Singularities

- Very competitive results
- Extension to 3D exists
- Guo, Labate. Analysis and identification of multidimensional singularities using the continuous shearlet transform, from: 'Shearlets: Multiscale Analysis for Multivariate Data', Birkhäuser/Springer (2012).
- Software available from http:
//www.math.uh.edu/~dlabate/software.html
- Link between Harmonic Analysis and Geometry

FURTHER Applications

- Time propagation of wave equations (Candès-Demanet (2006))
- Edge detection (Easley-Guo-Labate (2008))
- High quality denoising (Easley-Labate-Colonna (2009))
- Inpainting with theoretical guarantees (Genzel-Kułyniok (2015))
- Fast motion deblurring (G-Kereta-Wiesmann (2014))

SUMMARY

- Partitioning Fourier plane into anisotropic wedges yields dictionaries with built-in directionality
- This strategy yields families of representation systems capable of solving problems for which conventional systems fall short
- Fourier partitioning yields fast algorithms via FFT
- Harmonic Analysis is a treasure trove for designing dictionaries, customized to specific 'data architectures'

End of Part II

Thank You!

Appendix: Proofs and Additional Material

Proof Sketch: We have

$$
\|f\|_{2}^{2}=\sum_{j, l} \int_{\text {supp } \Phi_{j, l}}\left|\Phi_{j, l}(\xi) \mathcal{F} f(\xi)\right|^{2} d \xi
$$

Since $\left\{2^{-3 j / 4} \exp \left(2 \pi i U_{j, l} k \xi\right)\right\}_{k \in \mathbb{Z}^{2}}$ is an ONB of $L^{2}\left(\operatorname{supp} \Phi_{j, I}\right)$,

$$
\int\left|\Phi_{j, l}(\xi) \mathcal{F} f(\xi)\right|^{2} d \xi=\sum_{k \in \mathbb{Z}^{2}}\left|\int_{\mathbb{R}^{2}} 2^{-3 j / 4} \Phi_{j, l}(\xi) \mathcal{F} f(\xi) \exp \left(2 \pi i U_{j, l} k \xi\right) d \xi\right|^{2}
$$

By Parseval we have

$$
\int_{\mathbb{R}^{2}} \Phi_{j, l}(\xi) \mathcal{F} f(\xi) \exp \left(2 \pi i U_{j, l} k \xi\right) d \xi=\int_{\mathbb{R}^{2}} T_{U_{j, l}} \mathcal{F}^{-1} \Phi_{j, l}(x) f(x) d x
$$

Putting together we get

$$
\|f\|_{2}^{2}=\sum_{\lambda \in \Lambda}\left|\left\langle f, \varphi_{\lambda}\right\rangle\right|^{2}
$$

[^0]: ${ }^{1}$ ETH Zürich
 ${ }^{2}$ ETH Zürich, supported by SNF grant 146356

