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RECALL...

DEFINITION (DONOHO (2001))
The set E of cartoon images is given by

E := {f = f0 + χBf1} ,

where f0, f1 ∈ C2([0, 1]2) and χB is the indicator function of
B ⊂ [0, 1]2 with C2 boundary.

Recall benchmark approximation rate for E is N−1!



LIMITATIONS OF WAVELETS

THEOREM
We have that

s∗
�
E ,W2D(ϕ,ψ,α)

�
=

1
2
.

This is one magnitude short of the optimal rate N−1.
Can we find better dictionaries??



GOAL

Construct (tight) frame for L2(R2) such that for all f ∈ E we
have

�f − fN�2 � N−1,

where fN is the reconstruction from the N biggest frame
coefficients.



3. Curvelets, Shearlets and
Parabolic Molecules



CURVELETS: A FIRST BREAKTHROUGH

Main Idea: Wavelets are supported in isotropic
quadrilaterals of width ∼ 2j . Too many such quadrilaterals
are needed to cover the singularity curve.

❀ basis functions supported in an anisotropic rectangle of
length ∼ 2j/2 and width ∼ 2j . If we also allow rotations
along (say) 2j/2 equispaced angles at scale j we might
have a chance.



CURVELETS: A FIRST BREAKTHROUGH

Inspired by this idea we seek to construct systems of the
form

ϕj,l,k(x) := 23j/4ψ(D2j Rθj,l x − k),

where

Da := diag(a,
√

a), Rθ =

�
cos(θ) sin(θ)
sin(θ) −cos(θ)

�

and
θj,l ∼ 2−j/2l2π, l = −2j/2, . . . , 2j/2.

How to realize such a system?



CURVELETS: A FIRST BREAKTHROUGH

Start with decom-
position of Fourier
space into ‘parabolic
wedges’ of aspect
ratio ‘length ∼ width2’
(eg. length ∼ 2j ,
width ∼ 2j/2)
with associated
partition-of-unity
{Vj,l}j∈N, l∈{−2j/2,...,2j/2},
s.t.

�

j,l

|Vj,l(ξ)|2 = 1.

supp V3,0



CURVELETS: A FIRST BREAKTHROUGH

Build dictionary by modulating the partition functions:

ϕ̂j,l,k(ξ) := 2−3j/4 exp(2πiR−1
θj,l

D2−j kξ)Vj,l(ξ), j ∈ N, l ∈ {−2j/2, . . . , 2j/2}, k ∈ Z2,

where

Da := diag(a,
√

a), Rθ =

�
cos(θ) sin(θ)
sin(θ) −cos(θ)

�

and
θj,l ∼ 2−j/2l2π, l = −2j/2, . . . , 2j/2.

We collect all indices in the index set Λ and get dictionary
{ϕλ}λ∈Λ.



CURVELETS: A FIRST BREAKTHROUGH

Space-picture:

ϕj,l,k := 2−3j/4TUj,l kF
−1Vj,l , j ∈ N, l ∈ {−2j/2, . . . , 2j/2}, k ∈ Z2,

where
Ty f (·) := f (·− y),

Uj,l := R−1
θj,l

D2−j ,

j: scale, l: angle, k : location.



CURVELETS: A FIRST BREAKTHROUGH

THEOREM
The system {ϕλ}λ∈Λ constitutes a Parseval frame for L2(R2),
i.e.

�f�2
L2 =

�

λ∈Λ
|�f ,ϕλ�|2

and
f =

�

λ∈Λ
�f ,ϕλ�ϕλ. (1)

proof



CURVELETS: A FIRST BREAKTHROUGH

Curvelets are...



CURVELETS: A FIRST BREAKTHROUGH

...essentially waveforms whose essential support satisfies
‘width ∼ length2’...



CURVELETS: A FIRST BREAKTHROUGH

...oscillatory across the shorter edge and low-pass along
the longer edge...



CURVELETS: A FIRST BREAKTHROUGH

...scaled...



CURVELETS: A FIRST BREAKTHROUGH

...rotated...



CURVELETS: A FIRST BREAKTHROUGH

...and translated.



ANISOTROPIC SCALING

Important: In contrast to 2D-wavelets which have
essential support in quadrilaterals

2−j [k1 − a, k1 + a]× [k2 − a, k2 + a],

the supports of curvelets obeys a parabolic scaling law

length ∼ 2j and width ∼ 2j/2.



HEURISTIC: ISOTROPIC DILATION VS.
ANISOTROPIC DILATION
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Using elements satisfying parabolic scaling relation
length ∼ 2−j/2, width ∼ 2−j



HEURISTIC: ISOTROPIC DILATION VS.
ANISOTROPIC DILATION
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we can cover the singularity curve with ∼ 2j/2 elements, as
opposed to ∼ 2j for isotropic methods (such as wavelets)



HEURISTIC: ISOTROPIC DILATION VS.
ANISOTROPIC DILATION
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so if we cut at scale J we only need ∼ 2J/2 coefficients



HEURISTIC: ISOTROPIC DILATION VS.
ANISOTROPIC DILATION
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cartoon functions are in the Sobolev space H1/2,
therefore, cutting of at scale J will induce an error of order
2−J/2



HEURISTIC: ISOTROPIC DILATION VS.
ANISOTROPIC DILATION
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and we arrive at the desired rate.



OPTIMALITY OF CURVELETS

THEOREM (CANDÈS-DONOHO (2004))
Curvelets are optimal for cartoon-images, e.g.,

s∗(E ,Curvelet) = s∗(E) = 1.

Actual proof much more complicated.



SHEARLETS

� So far theoretical construction
� Next step: construction of fast algorithms
� � How implement rotations for digital data on a grid?

� Replace rotation by shearing!



SHEARLETS
Index set

Λσ :=
�
(ε, j, l, k) ∈ Z2 × Z4 : ε ∈ {0, 1}, j ≥ 0, l = −2� j

2 �, · · · , 2� j
2 �
�
,

and the shearlet system

Σ := {σλ : λ ∈ Λσ} ,

with

σ(ε,0,0,k)(·) = ϕ(·−k), σ(ε,j,l,k)(·) = 23j/4ψε
�

Dε
2j Sε

l,j ·−k
�
, j ≥ 1,

D0
a = Da, D1

a := diag(
√

a,a), Sl,j :=

�
1 l2−�j/2�

0 1

�
,

S1
l,j = (S0

l,j)
�.

supp Fϕ ⊂ [−2, 2]2,
supp Fψ0 ⊂ ([−4,−4] ∪ [1, 4])× [−2, 2],
supp Fψ1 ⊂ [−2, 2]× ([−4,−1] ∪ [1, 4])



SHEARLETS

THEOREM (GUO-LABATE (2008))
With a bandlimited shearlet frame Σ we have

s∗(E ,Σ) = s∗(E) = 1.



SHEARLETS

� Shearing better adapted to data sampled on digital
grid

� Fast algorithms exist
� Also compactly supported shearlet frames available

[Kutyniok et. al. (2012)]
� Software and publications available at
www.shearlet.org

� More general concept: parabolic molecules
encompass all known constructions and yield simple
proofs of optimal cartoon approximation [G-Kutyniok
(2014)].

www.shearlet.org


LITERATURE

� Candès, Dohoho. New tight frames of curvelets and
optimal representations of objects with piecewise C2

singularities. Communications in Pure and Applied
Mathematics (2004).

� Kutyniok, Labate (Eds.). Shearlets: Multiscale analysis
for multivariate data. Birkhäuser/Springer (2012).

� Grohs, Kutyniok. Parabolic Molecules. Foundations of
Computational Mathematics (2014).



4. Related Systems



DIFFERENT ANISOTROPIES

Consider dilation matrix Dβ
a := diag(a,aβ). Build frames

based on the principle

ϕj,l,k(x) := 2j(1+β)/2)ψ(Dβ
2j Rθj,l x − k),

where

θj,l ∼ 2−j(1−β)l2π, l = −2j/2, . . . , 2j(1−β).

β = 1 Wavelets
β = 1/2 Curvelets, shearlets, parabolic molecules

β = 0 Ridgelets
❀ β-molecules [G-Keiper-Kutyniok-Schaefer (2014)]



FOURIER PARTITIONINGS

Left to right: Fourier partitioning associated to wavelets,
curvelets, ridgelets.



APPROXIMATION RESULTS

New signal class of generalized cartoon-images

Eα := {f = f0 + χBf1} ,

where f0, f1 ∈ Cα([0, 1]2) and χB is the indicator function of
B ⊂ [0, 1]2 with C2 boundary.

THEOREM (G-KEIPER-KUTYNIOK-SCHAEFER (2014))
Frames of β-molecules are optimal for Eα if β = α−1 and
β ∈ [1/2, 1].



LINE SINGULARITIES

Signal class

Lα = {f ∈ Cα, apart from line discontinuities}.

THEOREM (CANDÈS (1999),
G-KEIPER-KUTYNIOK-SCHAEFER (2014))
0-molecules (aka ridgelets) are optimal for the signal class
Lα, e.g.

s∗(Lα, ridgelets) = s∗(Lα) = α/2.



LITERATURE

� Candès. Ridgelets and the representation of
mutilated Sobolev functions. SIAM Journal on
Mathematical Analysis (2001).

� Grohs, Keiper, Kutyniok and Schaefer. Cartoon
Approximation with α-Curvelets. preprint (2014),
available from
www.math.ethz.ch/~pgrohs/research.

� Grohs, Keiper, Kutyniok and Schaefer. α-Molecules.
preprint (2014), available from
www.math.ethz.ch/~pgrohs/research.



5. Some Applications



MORPHOLOGICAL COMPONENT ANALYSIS
Goal: Separate Signal into curvelike and pointlike

components.

Source: G. Kutyniok



MORPHOLOGICAL COMPONENT ANALYSIS

Wavelets are optimal for point-like features,
curvelets/shearlets/parabolic molecules are optimal for
curve-like features

For wavelet dictionary W = (ψj,k) and curvelet frame
Γ = (γj,k,l) consider combined dictionary W ∪ Γ and, given

f = fcurv + fpoint

seek the sparsest representation

f =
�

jk

cjkψj,k

� �� �
f̂point

+
�

j,k,l

dj,k,lγj,k,l

� �� �
f̂curv

.



� Actual algorithm uses bandpass filter on f =
�

i Pi f
and solves, for each frequency part

(f̂ i
point , f̂ i

curv ) := arg min
f j
point+f i

curv=Pi f

�(�f i
point ,ψj,k �)j,k��1 + �(�f i

curv , γj,k,l�)j,k,l��1 .

� Under certain conditions it holds that

lim
i→∞

�f̂ i
point − Pifpoint�+ �f̂ i

curv − Pifcurv�
�Pifpoint�+ �Pifcurv�

= 0.

� Donoho, Kutyniok. Microlocal Analysis of the
Geometric Separation Problem. Communications in
Pure and Applied Mathematics (2012).

� Software available at www.shearlab.org
� Link between Harmonic Analysis and Compressed

Sensing

www.shearlab.org


SOLVING TRANSPORT PDES

Equations of the form

s ·∇u(x , s)+κu(x , s) = f (x , s)+Q(u)(x , s), (x , s) ∈ Ω×Sd−1,

where Ω ⊂ Rd , κ absorption coefficient, f source term and
Q(u) scattering operator (for instance
Q(u)(x , s) =

�
Sd−1 K (s, t)u(x , t)dt) + inflow BCs.

Stationary distribution of a phase-space density u whose
evolution is governed by free transport, absorption,
external sources and interaction with the surrounding
medium via a scattering operator. Examples include
radiative transfer (simulation of dense gas at very high
temperatures) or socio-economic processes.



KINETIC TRANSPORT EQUATIONS

Difficulties in the numerical solution:
1. ’Curse of dimensionality’: Problem is

2d − 1-dimensional
2. Line singularities transported along rays
3. The equation is not H1-elliptic – wavelet and FE

discretizations do not lead to well-conditioned linear
systems

4. Anisotropy – anisotropic meshes cannot be used since
they need to be combined for different directions.

Goal: Adaptive approximation schemes which operate in
optimal computational complexity (accuracy vs. number
of flops).

Question: What is the right discretization for such
equations?



SOLVING TRANSPORT PDES

Solution of

s ·∇u + κu = f

may be singular along
lines ❀ use ridgelets for
discretization in space!



SOLVING TRANSPORT PDES

THEOREM (G,OBERMEIER (2014))
Let u be a solution of s ·∇u + κu = f which is Cn apart
from a line discontinuity in direction s. Then there exists a
computable ridgelet-based algorithm SOLVE which
computes in N flops an approximation
uN ∈ H1,s := {v ∈ L2 : s ·∇v ∈ L2} with the approximation
rate

�u − uN�H1,s � N−(n−1)/2

This rate is optimal.



SOLVING TRANSPORT PDES

Numerical approximation computed by SOLVE converges
exponentially, even if line discontinuities are present in the
solution!
Compare ridgelet error ∼ exp(−γNδ) vs. error at least
∼ N−1/2 with conventional discretizations (wavelets, FEM)!



SOLVING TRANSPORT PDES

Back to full kinetic equation with scattering
Q(u)(x , s) =

�
S1 u(x , s)ds

red: source term, blue absorption (scattering around
obstacle) Quantity of interest: Incident radiation�
S1 u(x , s)ds.



SOLVING TRANSPORT PDES

Solution computed using ridgelets in space, together with
sparse collocation scheme, breaking curse of
dimensionality.



SOLVING TRANSPORT PDES

� First provably convergent adaptive solver for transport
PDEs

� Etter, Grohs, Obermeier. FFRT-A Fast Finite Ridgelet
Transform for Radiative Transport. SIAM Journal on
Multiscale Modeling and Simulation (2015).
Grohs, Obermeier. Optimal Adaptive Ridgelet
Schemes for Linear Transport Equations. (2014),
available from
www.math.ethz.ch/~pgrohs/research.

� Software package available at
www.math.ethz.ch/~pgrohs/research/FFRT.

� Link between Harmonic Analysis and Numerics



CLASSIFICATION OF SINGULARITIES

Separate edges, corners and smooth regions

Source: D. Labate

Shearlet coefficients have different decay rates for
different types of singularities.



CLASSIFICATION OF SINGULARITIES

THEOREM (GUO-LABATE (2008))
With a = 2−j , the scale we have



CLASSIFICATION OF SINGULARITIES

� Very competitive results
� Extension to 3D exists
� Guo, Labate. Analysis and identification of

multidimensional singularities using the continuous
shearlet transform, from: ‘Shearlets: Multiscale Analysis
for Multivariate Data’, Birkhäuser/Springer (2012).

� Software available from http:
//www.math.uh.edu/~dlabate/software.html

� Link between Harmonic Analysis and Geometry

http://www.math.uh.edu/~dlabate/software.html
http://www.math.uh.edu/~dlabate/software.html


FURTHER APPLICATIONS

� Time propagation of wave equations
[Candès-Demanet (2006)]

� Edge detection [Easley-Guo-Labate (2008)]
� High quality denoising [Easley-Labate-Colonna

(2009)]
� Inpainting with theoretical guarantees

[Genzel-Kutyniok (2015)]
� Fast motion deblurring [G-Kereta-Wiesmann (2014)]



SUMMARY

� Partitioning Fourier plane into anisotropic wedges
yields dictionaries with built-in directionality

� This strategy yields families of representation systems
capable of solving problems for which conventional
systems fall short

� Fourier partitioning yields fast algorithms via FFT
� Harmonic Analysis is a treasure trove for designing

dictionaries, customized to specific ‘data
architectures’



End of Part II



Thank You!



Appendix: Proofs and
Additional Material



Proof Sketch: We have

�f�2
2 =

�

j,l

�

supp Φj,l

|Φj,l(ξ)F f (ξ)|2dξ.

Since {2−3j/4 exp(2πiUj,l kξ)}k∈Z2 is an ONB of L2(supp Φj,l),
�

|Φj,l(ξ)F f (ξ)|2dξ =
�

k∈Z2

|
�

R2
2−3j/4Φj,l(ξ)F f (ξ)exp(2πiUj,l kξ)dξ|2.

By Parseval we have
�

R2
Φj,l(ξ)F f (ξ)exp(2πiUj,l kξ)dξ =

�

R2
TUj,l kF

−1Φj,l(x)f (x)dx .

Putting together we get

�f�2
2 =

�

λ∈Λ
|�f ,ϕλ�|2.

return to talk
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