En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Critères de recherche : "2017" 229 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together with some local and global index theorems relating the de Rham index to the behavior of the radii of the curve. If time permits I will say a word about some recent applications to the Riemann-Hurwitz formula.[-]
I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together ...[+]

12H25 ; 14G22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Busemann functions for the two-dimensional corner growth model with exponential weights. Derivation of the stationary corner growth model and its use for calculating the limit shape and proving existence of Busemann functions.

60K35 ; 60K37 ; 82C22 ; 82C43 ; 82D60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The KPZ fixed point - Lecture 2 - Remenik, Daniel (Auteur de la Conférence) | CIRM H

Multi angle

In these lectures I will present the recent construction of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class.
In the first part of the minicourse I will describe this process and how it arises from a particular microscopic model, the totally asymmetric exclusion process (TASEP). Then I will present a Fredholm determinant formula for its distribution (at a fixed time) and show how all the main properties of the fixed point (including the Markov property, space and time regularity, symmetries and scaling invariance, and variational formulas) can be derived from the formula and the construction, and also how the formula reproduces known self-similar solutions such as the $Airy_1andAiry_2$ processes.
The second part of the course will be devoted to explaining how the KPZ fixed point can be computed starting from TASEP. The method is based on solving, for any initial condition, the biorthogonal ensemble representation for TASEP found by Sasamoto '05 and Borodin-Ferrari-Prähofer-Sasamoto '07. The resulting kernel involves transition probabilities of a random walk forced to hit a curve defined by the initial data, and in the KPZ 1:2:3 scaling limit the formula leads in a transparent way to a Fredholm determinant formula given in terms of analogous kernels based on Brownian motion.
Based on joint work with K. Matetski and J. Quastel.[-]
In these lectures I will present the recent construction of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class.
In the first part of the minicourse I will describe this process and how it arises from a particular microscopic model, the totally asymmetric exclusion ...[+]

82C31 ; 82C23 ; 82D60 ; 82C22 ; 82C43

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

$D$-modules and $p$-curvatures - Esnault, Hélène (Auteur de la Conférence) | CIRM H

Multi angle

We show relations between rigidity of connections in characteristic 0 and nilpotency of their $p$-curvatures (a consequence of a conjecture by Simpson and of a generalization of Grothendieck's $p$-curvature conjecture).
Work in progress with Michael Groechenig.

14D05 ; 14E20 ; 14F05 ; 14F35 ; 14G17

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Large gaps between primes in subsets - Maynard, James (Auteur de la Conférence) | CIRM H

Post-edited

All previous methods of showing the existence of large gaps between primes have relied on the fact that smooth numbers are unusually sparse. This feature of the argument does not seem to generalise to showing large gaps between primes in subsets, such as values of a polynomial. We will talk about recent work which allows us to show large gaps between primes without relying on smooth number estimates. This then generalizes naturally to show long strings of consecutive composite values of a polynomial. This is joint work with Ford, Konyagin, Pomerance and Tao.[-]
All previous methods of showing the existence of large gaps between primes have relied on the fact that smooth numbers are unusually sparse. This feature of the argument does not seem to generalise to showing large gaps between primes in subsets, such as values of a polynomial. We will talk about recent work which allows us to show large gaps between primes without relying on smooth number estimates. This then generalizes naturally to show long ...[+]

11N05 ; 11N35 ; 11N36

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped modes. Associated eigenvalues $\lambda = k^2$ are embedded in the essential spectrum $\mathbb{R}^+$. They can be computed as the real part of the complex spectrum of a non-self-adjoint eigenvalue problem, defined by using the so-called Perfectly Matched Layers (which consist in a complex dilation in the infinite direction) [1].
We show here that it is possible, by modifying in particular the parameters of the Perfectly Matched Layers, to define new complex spectra which include, in addition to trapped modes, frequencies where the potential $V$ is, in some sense, invisible to one incident wave.
Our approach allows to extend to higher dimension the results obtained in [2] on a 1D model problem.[-]
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped ...[+]

35Q35 ; 35J05 ; 65N30 ; 41A60 ; 47H10 ; 76Q05 ; 35B40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Certain quantum spectral problems have the remarkable property that the formal perturbative series for the energy spectrum can be used to generate all other terms in the entire trans-series, in a completely constructive manner. I explain a geometric all-orders WKB approach to these perturbative/non-perturbative relations, which reveals surprising connections to number theory and modular forms.

81T15 ; 81T16 ; 81Q20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The cubic Szegö equation has been introduced as a toy model for totally non dispersive evolution equations. It turned out that it is a complete integrable Hamiltonian system for which we built a non linear Fourier transform giving an explicit expression of the solutions.
This explicit formula allows to study the dynamics of the solutions. We will explain different aspects of it: almost-periodicity of the solutions in the energy space, uniform analyticity for a large set of initial data, turbulence phenomenon for a dense set of smooth initial data in large Sobolev spaces.
From joint works with Patrick Gérard.[-]
The cubic Szegö equation has been introduced as a toy model for totally non dispersive evolution equations. It turned out that it is a complete integrable Hamiltonian system for which we built a non linear Fourier transform giving an explicit expression of the solutions.
This explicit formula allows to study the dynamics of the solutions. We will explain different aspects of it: almost-periodicity of the solutions in the energy space, uniform ...[+]

35B40 ; 35B15 ; 35Q55 ; 37K15 ; 47B35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider competitive capacity investment for a duopoly of two distinct producers. The producers are exposed to stochastically fluctuating costs and interact through aggregate supply. Capacity expansion is irreversible and modeled in terms of timing strategies characterized through threshold rules. Because the impact of changing costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing the transitions among the discrete investment stages. Working in a continuous-time diffusion framework, we characterize and analyze the resulting Nash equilibrium and game values. Our analysis quantifies the dynamic competition effects and yields insight into dynamic preemption and over-investment in a general asymmetric setting. A case-study considering the impact of fluctuating emission costs on power producers investing in nuclear and coal-fired plants is also presented.[-]
We consider competitive capacity investment for a duopoly of two distinct producers. The producers are exposed to stochastically fluctuating costs and interact through aggregate supply. Capacity expansion is irreversible and modeled in terms of timing strategies characterized through threshold rules. Because the impact of changing costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing the transitions among the ...[+]

93E20 ; 91B38 ; 91A80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cubature methods and applications - Crisan, Dan (Auteur de la Conférence) | CIRM H

Multi angle

The talk will have two parts: In the first part, I will go over some of the basic feature of cubature methods for approximating solutions of classical SDEs and how they can be adapted to solve Backward SDEs. In the second part, I will introduce some recent results on the use of cubature method for approximating solutions of McKean-Vlasov SDEs.

65C30 ; 60H10 ; 34F05 ; 60H35 ; 91G60

Sélection Signaler une erreur