En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Critères de recherche : "2018" 206 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many PDEs arising in physical systems have symmetries and conservation laws that are local in space. However, classical finite element methods are described in terms of spaces of global functions, so it is difficult even to make sense of such local properties. In this talk, I will describe how hybrid finite element methods, based on non-overlapping domain decomposition, provide a way around this local-vs.-global obstacle. Specifically, I will discuss joint work with Robert McLachlan on multisymplectic hybridizable discontinuous Galerkin methods for Hamiltonian PDEs, as well as joint work with Yakov Berchenko-Kogan on symmetry-preserving hybrid finite element methods for gauge theory.[-]
Many PDEs arising in physical systems have symmetries and conservation laws that are local in space. However, classical finite element methods are described in terms of spaces of global functions, so it is difficult even to make sense of such local properties. In this talk, I will describe how hybrid finite element methods, based on non-overlapping domain decomposition, provide a way around this local-vs.-global obstacle. Specifically, I will ...[+]

65N30 ; 37K05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Introduction to quantum optics - Lecture 1 - Zoller, Peter (Auteur de la Conférence) | CIRM H

Post-edited

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as 'closed' (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.[-]
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...[+]

81P68 ; 81V80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Introduction to quantum optics - Lecture 2 - Zoller, Peter (Auteur de la Conférence) | CIRM H

Multi angle

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as 'closed' (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.[-]
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...[+]

81P68 ; 81V80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Introduction to quantum optics - Lecture 3 - Zoller, Peter (Auteur de la Conférence) | CIRM H

Multi angle

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as 'closed' (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.[-]
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...[+]

81P68 ; 81V80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Introduction to quantum optics - Lecture 4 - Zoller, Peter (Auteur de la Conférence) | CIRM H

Multi angle

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as 'closed' (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.[-]
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...[+]

81P68 ; 81V80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

How to make good resolutions - Véber, Amandine (Auteur de la Conférence) | CIRM H

Multi angle

In this presentation, we shall discuss the reconstruction of demographic parameters based on the genetic variability observed within a sample of individual DNA. In the family of models that we consider, the statistics describing this genetic diversity (number of mutations, distribution of the mutations amongst individuals in the sample) depend on a more or less coarse ‘resolution of (i.e., level of information on) the hidden genealogical tree that relates the sampled individuals. Considering the optimal resolution thus allows to greatly improve the exploration of the space of possible genealogies when computing the likelihood of demographic parameters, compared to classical methods based on full labelled trees such as Kingmans coalescent. We shall focus on two examples, based on works with Raazesh Sainudiin (Uppsala Univ.) and with Julia Palacios (Stanford Univ.), Sohini Ramachandran (Brown Univ.) and John Wakeley (Harvard Univ.).[-]
In this presentation, we shall discuss the reconstruction of demographic parameters based on the genetic variability observed within a sample of individual DNA. In the family of models that we consider, the statistics describing this genetic diversity (number of mutations, distribution of the mutations amongst individuals in the sample) depend on a more or less coarse ‘resolution of (i.e., level of information on) the hidden genealogical tree ...[+]

92D15 ; 92D20 ; 60J10 ; 60J27

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In this talk we discuss the convergence to equilibrium in conservative-dissipative ODE-systems, kinetic relaxation models (of BGK-type), and Fokker-Planck equation. This will include symmetric, non-symmetric and hypocoercive evolution equations. A main focus will be on deriving sharp decay rates.
We shall start with hypocoercivity in ODE systems, with the ”hypocoercivity index” characterizing its structural complexity.
BGK equations are kinetic transport equations with a relaxation operator that drives the phase space distribution towards the spatially local equilibrium, a Gaussian with the same macroscopic parameters. Due to the absence of dissipation w.r.t. the spatial direction, convergence to the global equilibrium is only possible thanks to the transport term that mixes various positions. Hence, such models are hypocoercive.
We shall prove exponential convergence towards the equilibrium with explicit rates for several linear, space periodic BGK-models in dimension 1 and 2. Their BGK-operators differ by the number of conserved macroscopic quantities (like mass, momentum, energy), and hence their hypocoercivity index. Our discussion includes also discrete velocity models, and the local exponential stability of a nonlinear BGK-model.
The third part of the talk is concerned with the entropy method for (non)symmetric Fokker-Planck equations, which is a powerful tool to analyze the rate of convergence to the equilibrium (in relative entropy and hence in L1). The essence of the method is to first derive a differential inequality between the first and second time derivative of the relative entropy, and then between the entropy dissipation and the entropy. For hypocoercive Fokker-Planck equations, i.e. degenerate parabolic equations (with drift terms that are linear in the spatial variable) we modify the classical entropy method by introducing an auxiliary functional (of entropy dissipation type) to prove exponential decay of the solution towards the steady state in relative entropy. The obtained rate is indeed sharp (both for the logarithmic and quadratic entropy). Finally, we extend the method to the kinetic Fokker-Planck equation (with nonquadratic potential).[-]
In this talk we discuss the convergence to equilibrium in conservative-dissipative ODE-systems, kinetic relaxation models (of BGK-type), and Fokker-Planck equation. This will include symmetric, non-symmetric and hypocoercive evolution equations. A main focus will be on deriving sharp decay rates.
We shall start with hypocoercivity in ODE systems, with the ”hypocoercivity index” characterizing its structural complexity.
BGK equations are kinetic ...[+]

35Q84 ; 35H10 ; 35B20 ; 35K10 ; 35B40 ; 47D07 ; 35Pxx ; 47D06 ; 82C31

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

How many cubes are orientable? - Da Silva, Ilda P. F. (Auteur de la Conférence) | CIRM H

Multi angle

A cube is a matroid over $C^n=\{-1,+1\}^n$ that contains as circuits the usual rectangles of the real affine cube packed in such a way that the usual facets and skew-facets are hyperplanes of the matroid.
How many cubes are orientable? So far, only one: the oriented real affine cube. We review the results obtained so far concerning this question. They follow two directions:
1) Identification of general obstructions to orientability in this class. (da Silva, EJC 30 (8), 2009, 1825-1832).
2) (work in collaboration with E. Gioan) Identification of algebraic and geometric properties of recursive families of non-negative integer vectors defining hyperplanes of the real affine cube and the analysis of this question and of las Vergnas cube conjecture in small dimensions.[-]
A cube is a matroid over $C^n=\{-1,+1\}^n$ that contains as circuits the usual rectangles of the real affine cube packed in such a way that the usual facets and skew-facets are hyperplanes of the matroid.
How many cubes are orientable? So far, only one: the oriented real affine cube. We review the results obtained so far concerning this question. They follow two directions:
1) Identification of general obstructions to orientability in this ...[+]

05B35 ; 52A37 ; 52C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

​Limit theorems for almost Anosov flows - Terhesiu, Dalia (Auteur de la Conférence) | CIRM H

Multi angle

​An almost Anosov flow is a flow having continuous flow-invariant splitting of the tangent bundle with exponential expansion/contraction in the unstable/stable direction, except for a finite number (in our case a single) periodic orbits. Roughly, almost Anosov flows are perturbed Anosov flows, where the perturbation is local around these periodic orbits, making them neutral. For this type of flows, we obtain limit theorems (stable, standard and non-standard CLT) for a large class of (unbounded) observables. I will present these results stressing on the method of proof. This is joint work with H. Bruin and M. Todd.[-]
​An almost Anosov flow is a flow having continuous flow-invariant splitting of the tangent bundle with exponential expansion/contraction in the unstable/stable direction, except for a finite number (in our case a single) periodic orbits. Roughly, almost Anosov flows are perturbed Anosov flows, where the perturbation is local around these periodic orbits, making them neutral. For this type of flows, we obtain limit theorems (stable, standard and ...[+]

37D35 ; 60J10 ; 37D25 ; 37A10 ; 37E05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Since the proof of the Calabi conjecture given by Yau, complex Monge-Ampère equations on compact Kähler manifolds have been intensively studied.
In this talk we consider complex Monge-Ampère equations with prescribed singularities. More precisely, we fix a potential and we show existence and uniqueness of solutions of complex Monge-Ampère equations which have the same singularity type of the model potential we chose. This result can be interpreted as a generalisation of Yau's theorem (in this case the model potential is smooth).
As a corollary we obtain the existence of singular Kähler-Einstein metrics with prescribed singularities on general type and Calabi-Yau manifolds.
This is a joint work with Tamas Darvas and Chinh Lu.[-]
Since the proof of the Calabi conjecture given by Yau, complex Monge-Ampère equations on compact Kähler manifolds have been intensively studied.
In this talk we consider complex Monge-Ampère equations with prescribed singularities. More precisely, we fix a potential and we show existence and uniqueness of solutions of complex Monge-Ampère equations which have the same singularity type of the model potential we chose. This result can be ...[+]

32J27 ; 32Q15 ; 32Q20 ; 32W20

Sélection Signaler une erreur