En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Combinatoires 251 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Roth's theorem states that a subset $A$ of $\{1, \ldots, N\}$ of positive density contains a positive $N^2$-proportion of (non-trivial) three arithmetic progressions, given by pairs $(a, d)$ with $d \neq 0$ such that $a, a+d, a+2 d$ all lie in $A$. In recent breakthrough work by Kelley and Meka, the known bounds have been improved drastically. One of the core ingredients of the their proof is a version of the almost periodicity result due to Croot and Sisask. The latter has been obtained in a non-quantitative form by Conant and Pillay for amenable groups using continuous logic.
In joint work with Daniel Palacín, we will present a model-theoretic version (in classical first-order logic) of the almost-periodicity result for a general group equipped with a Keisler measure under some mild assumptions and show how to use this result to obtain a non-quantitative proof of Roth's result. One of the main ideas of the proof is an adaptation of a result of Pillay, Scanlon and Wagner on the behaviour of generic types in a definable group in a simple theory.[-]
Roth's theorem states that a subset $A$ of $\{1, \ldots, N\}$ of positive density contains a positive $N^2$-proportion of (non-trivial) three arithmetic progressions, given by pairs $(a, d)$ with $d \neq 0$ such that $a, a+d, a+2 d$ all lie in $A$. In recent breakthrough work by Kelley and Meka, the known bounds have been improved drastically. One of the core ingredients of the their proof is a version of the almost periodicity result due to ...[+]

03C45 ; 11B30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Grothendieck-Knudsen moduli space of stable rational curves n markings is arguably one of the simplest moduli spaces: it is a smooth projective variety that can be described explicitly as a blow-up of projective space, with strata corresponding to nodal curves similar to the torus invariant strata of a toric variety. Conjecturally, its Mori cone of curves is generated by strata, but this is known only for n up to 7. In contrast, the cones of effective divisors are not f initely generated, in all characteristics, when n is at least 10. After a general introduction to these topics, I will discuss what we call elliptic pairs and LangTrotter polygons, relating the question of finite generation of effective cones of blow-ups of certain toric surfaces to the arithmetic of elliptic curves. These lectures are based on joint work with Antonio Laface, Jenia Tevelev and Luca Ugaglia.[-]
The Grothendieck-Knudsen moduli space of stable rational curves n markings is arguably one of the simplest moduli spaces: it is a smooth projective variety that can be described explicitly as a blow-up of projective space, with strata corresponding to nodal curves similar to the torus invariant strata of a toric variety. Conjecturally, its Mori cone of curves is generated by strata, but this is known only for n up to 7. In contrast, the cones of ...[+]

14C20 ; 14M25 ; 14E30 ; 14H10 ; 14H52

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A singular path through toric geometry - Gonzalez Perez, Pedro Daniel (Auteur de la conférence) | CIRM H

Multi angle

I will speak about some of the aspects of the work of Bernard Teissier concerning singularities, toric geometry and valuations.

14M25 ; 14E15 ; 14B05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Maps decorated by the Ising model are a remarkable instance of a model of non-uniform maps with very nice enumerative properties. In this talk, I will first explain how one can obtain a differential equation for the generating function of Ising-decorated cubic maps in arbitrary genus, related to the Kadomtsev--Petviashvili (KP) hierarchy. In particular, this leads to an efficient algorithm to enumerate Ising cubic maps in high genus. I will also present and compare implementations of this algorithm in Maple and SageMath. This is based on a joint work with Mireille Bousquet-Mélou and Baptiste Louf.[-]
Maps decorated by the Ising model are a remarkable instance of a model of non-uniform maps with very nice enumerative properties. In this talk, I will first explain how one can obtain a differential equation for the generating function of Ising-decorated cubic maps in arbitrary genus, related to the Kadomtsev--Petviashvili (KP) hierarchy. In particular, this leads to an efficient algorithm to enumerate Ising cubic maps in high genus. I will also ...[+]

05A15 ; 82B20 ; 37K10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring theory, offering detailed insights into the algorithmic framework. Special attention is given to the representation of indefinite nested sums and products within the difference ring setting. As a bonus, we obtain a toolbox that facilitates the construction of summation objects whose sequences are algebraically independent of one another. In the third part, we demonstrate how this summation toolbox can be applied to tackle complex problems arising in enumerative combinatorics, number theory, and elementary particle physics.[-]
The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring ...[+]

68W30 ; 33F10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring theory, offering detailed insights into the algorithmic framework. Special attention is given to the representation of indefinite nested sums and products within the difference ring setting. As a bonus, we obtain a toolbox that facilitates the construction of summation objects whose sequences are algebraically independent of one another. In the third part, we demonstrate how this summation toolbox can be applied to tackle complex problems arising in enumerative combinatorics, number theory, and elementary particle physics.[-]
The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring ...[+]

68W30 ; 33F10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Pattern avoiding 3-permutations and triangle bases - Schabanel, Juliette (Auteur de la conférence) | CIRM H

Multi angle

Dans cet exposé, on construit une bijection entre une classe de permutations de dimension 3 évitant certains motifs et les bases du triangles, des ensembles de points entiers particuliers issus de la théorie des pavages. L'existence de cette bijection avait été conjecturée par Nicolas Bonichon et Pierre-Jean Morel.

05C30 ; 05A19

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The $O(n)$ model can be formulated in terms of loops living on the lattice, with n the fugacity per loop. In two dimensions, it is known to possess a rich critical behavior, involving critical exponents varying continuously with n. In this talk, we will consider the case where the model is ”coupled to 2D quantum gravity”, namely it is defined on a random map.
It has been known since the 90's that the partition function of the model can be expressed as a matrix integral, which can be evaluated exactly in the planar limit. A few years ago, together with G. Borot and E. Guitter, we revisited the problem by a combinatorial approach, which allows to relate it to the so-called Boltzmann random maps, which have no loops but faces of arbitrary (and controlled) face degrees. In particular we established that the critical points of the $O(n)$ model are closely related to the ”stable maps” introduced by Le Gall and Miermont.
After reviewing these results, I will move on to a more recent work done in collaboration with G. Borot and B. Duplantier, where we study the nesting statistics of loops. More precisely we consider loop configurations with two marked points and study the distribution of the number of loops separating them. The associated generating function can be computed exactly and, by taking asymptotics, we show that the number of separating loops grows logarithmically with the size of the maps at a (non generic) critical point, with an explicit large deviation function. Using a continuous generalization of the KPZ relation, our results are in full agreement with those of Miller, Watson and Wilson concerning nestings in Conformal Loop Ensembles.[-]
The $O(n)$ model can be formulated in terms of loops living on the lattice, with n the fugacity per loop. In two dimensions, it is known to possess a rich critical behavior, involving critical exponents varying continuously with n. In this talk, we will consider the case where the model is ”coupled to 2D quantum gravity”, namely it is defined on a random map.
It has been known since the 90's that the partition function of the model can be ...[+]

05Axx ; 60K35 ; 81T40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

Sélection Signaler une erreur