Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will explain how to combine tools of local tropical geometry and logarithmic geometry in order to study the structure of Milnor fibers of smoothings of isolated complex singularities, up to homeomorphisms. I will partly follow the paper “The Milnor fiber conjecture of Neumann and Wahl, and an overview of its proof”, written in collaboration with Marıa Angelica Cueto and Dmitry Stepanov.This course replaces a course on the same topic that should have been delivered by Angelica Cueto.
[-]
I will explain how to combine tools of local tropical geometry and logarithmic geometry in order to study the structure of Milnor fibers of smoothings of isolated complex singularities, up to homeomorphisms. I will partly follow the paper “The Milnor fiber conjecture of Neumann and Wahl, and an overview of its proof”, written in collaboration with Marıa Angelica Cueto and Dmitry Stepanov.This course replaces a course on the same topic that ...
[+]
14B05 ; 14A21 ; 14M25 ; 14T90 ; 32S05 ; 32S55
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will explain how to combine tools of local tropical geometry and logarithmic geometry in order to study the structure of Milnor fibers of smoothings of isolated complex singularities, up to homeomorphisms. I will partly follow the paper “The Milnor fiber conjecture of Neumann and Wahl, and an overview of its proof”, written in collaboration with Marıa Angelica Cueto and Dmitry Stepanov.This course replaces a course on the same topic that should have been delivered by Angelica Cueto.
[-]
I will explain how to combine tools of local tropical geometry and logarithmic geometry in order to study the structure of Milnor fibers of smoothings of isolated complex singularities, up to homeomorphisms. I will partly follow the paper “The Milnor fiber conjecture of Neumann and Wahl, and an overview of its proof”, written in collaboration with Marıa Angelica Cueto and Dmitry Stepanov.This course replaces a course on the same topic that ...
[+]
14B05 ; 14A21 ; 14M25 ; 14T90 ; 32S05 ; 32S55
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The degree of a dominant rational map $f: \mathbb{P}^n \rightarrow \mathbb{P}^n$ is the common degree of its homogeneous components. By considering iterates of $f$, one can form a sequence $\operatorname{deg}\left(f^n\right)$, which is submultiplicative and hence has the property that there is some $\lambda \geq 1$ such that $\left(\operatorname{deg}\left(f^n\right)\right)^{1 / n} \rightarrow \lambda$. The quantity $\lambda$ is called the first dynamical degree of $f$. We'll give an overview of the significance of the dynamical degree in complex dynamics and describe an example of a birational self-map of $\mathbb{P}^3$ in which this dynamical degree is provably transcendental. This is joint work with Jeffrey Diller, Mattias Jonsson, and Holly Krieger.
[-]
The degree of a dominant rational map $f: \mathbb{P}^n \rightarrow \mathbb{P}^n$ is the common degree of its homogeneous components. By considering iterates of $f$, one can form a sequence $\operatorname{deg}\left(f^n\right)$, which is submultiplicative and hence has the property that there is some $\lambda \geq 1$ such that $\left(\operatorname{deg}\left(f^n\right)\right)^{1 / n} \rightarrow \lambda$. The quantity $\lambda$ is called the first ...
[+]
32H50
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together with some local and global index theorems relating the de Rham index to the behavior of the radii of the curve. If time permits I will say a word about some recent applications to the Riemann-Hurwitz formula.
[-]
I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together ...
[+]
12H25 ; 14G22
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In my talk, I will discuss an application of the theory of motives to transcendence theory, concentrating on the formal aspects. The Period Conjecture predicts that all relations between period numbers are induced by properties of the category of motives. It is a theorem for motives of points and curves, but wide open in general. The Period Conjecture also implies fullness of the Hodge-de Rham realization on Nori motives. If time permits, I will discuss how this generalizes (conjecturally) to triangulated motives and thus to motivic cohomology.
[-]
In my talk, I will discuss an application of the theory of motives to transcendence theory, concentrating on the formal aspects. The Period Conjecture predicts that all relations between period numbers are induced by properties of the category of motives. It is a theorem for motives of points and curves, but wide open in general. The Period Conjecture also implies fullness of the Hodge-de Rham realization on Nori motives. If time permits, I will ...
[+]
14F42