En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Number Theory 312 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Functional equations and combinatorics - Di Vizio, Lucia (Auteur de la Conférence) | CIRM H

Multi angle

Starting from a presentation of the many recent applications of Galois theory of functional equations to enumerative combinatorics, we will introduce the Galois theory of (different kinds) of difference equations. We will focus on the point of view of the applications, hence with little emphasis on the technicalities of the domain, but I'm willing to do an hour of « exercises » (i.e. to go a little deeper into the proofs), if a part of the audience is interested.[-]
Starting from a presentation of the many recent applications of Galois theory of functional equations to enumerative combinatorics, we will introduce the Galois theory of (different kinds) of difference equations. We will focus on the point of view of the applications, hence with little emphasis on the technicalities of the domain, but I'm willing to do an hour of « exercises » (i.e. to go a little deeper into the proofs), if a part of the ...[+]

12H05 ; 05A15 ; 11B68 ; 05A40 ; 33B15 ; 33C45 ; 39A10 ; 30D30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In my talk, I will discuss an application of the theory of motives to transcendence theory, concentrating on the formal aspects. The Period Conjecture predicts that all relations between period numbers are induced by properties of the category of motives. It is a theorem for motives of points and curves, but wide open in general. The Period Conjecture also implies fullness of the Hodge-de Rham realization on Nori motives. If time permits, I will discuss how this generalizes (conjecturally) to triangulated motives and thus to motivic cohomology.[-]
In my talk, I will discuss an application of the theory of motives to transcendence theory, concentrating on the formal aspects. The Period Conjecture predicts that all relations between period numbers are induced by properties of the category of motives. It is a theorem for motives of points and curves, but wide open in general. The Period Conjecture also implies fullness of the Hodge-de Rham realization on Nori motives. If time permits, I will ...[+]

14F42

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Distributions of Frobenius of elliptic curves #2 - David, Chantal (Auteur de la Conférence) | CIRM H

Single angle

In all the following, let an elliptic curve $E$ defined over $\mathbb{Q}$ without complex multiplication. For every prime $\ell$, let $E[\ell]= E[\ell](\overline{\mathbb{Q}})$ be the group of  $\ell$-torsion points of  $E$, and let $K_\ell$  be the field extension obtained from $\mathbb{Q}$ by adding the coordinates of the $\ell$-torsion points of $E $. This is a Galois extension of$\mathbb{Q}$ , andGal$(K_\ell/\mathbb{Q})\subseteq GL_2(\mathbb{Z}/\ell\mathbb{Z})$.
Using the Chebotarev density theorem for the extensions $K_\ell/\mathbb{Q}$ associated to a given curve $E$, we can study various sequences associated to the reductions of a global curve $E/(\mathbb{Q}$, as the sequences
$\left \{\#E(\mathbb{F}_p)=p+1-a_p(E)\right \}_{p\: primes}, or \left \{ a_p(E)=r \right \}_{p\: primes}$
for some fixed value $r\in \mathbb{Z}$. For example, if  $\pi_{E,r}(x)= \#\left \{ p\leq x : a_p(E)=r \right \}$,
then it was shown by Serre and K. Murty, R. Murty and Saradha that under the GRH,
$\pi_{E,r}(x)\ll x^{4/5} log^{-1/5}x$, for all $r\in \mathbb{Z}$, and $ \pi_{E,0}(x)\ll x^{3/4}$.
There are also some weaker bounds without the GRH. Some other sequences may also be treated by apply-ing the Chebotarev density theorem to other extensions of $\mathbb{Q} $ as the ones coming from the “mixed Galois representations” associated to $E[\ell]$ and a given quadratic field $K$  which can be used to get upper bounds onthe number of primes $p$ such that End $(E/\mathbb{F}_p)\bigotimes \mathbb{Q}$  is isomorphic to a given quadratic imaginary field $K$ .
We will also explain how the densities obtained from the Cheboratev density theorem can be used togetherwith sieve techniques. For a first application, we consider a conjecture of Koblitz which predicts that
$\pi_{E}^{twin}(x):=\#\left \{ p\leq x : p+1-a_p(E)\, is\, prime \right \}\sim C_{E}^{twin}\frac{x}{log^2x}$
This is analogue to the classical twin prime conjecture, and the constant $C_{E}^{twin}$  can be explicitly writtenas an Euler product like the twin prime constant. We explain how classical sieve techniques can be usedto show that under the GRH, there are at least 2.778 $C_{E}^{twin}x/log^2x$ primes $p$ such that $p+1-a_p(E)^2$ has at most 8 prime factors, counted with multiplicity. We also explain some possible generalisation of Koblitz conjectures which could be treated by similar techniques given some explicitversions (i.e. with explicit error terms) of density theorems existing in the literature.
Other examples of sieving using the Chebotarev density theorem in the context of elliptic curves are thegeneralisations of Hooley's proof of the Artin's conjecture on primitive roots (again under the GRH).Using a similar techniques, but replacing the cyclotomic fields by the $\ell$-division fields $K_\ell$  of a given elliptic curve $E/\mathbb{Q}$, Serre showed that there is a positive proportion of primes $p$ such that the group $E(\mathbb{F}_p)$ is cyclic (when $E$ does not have a rational 2-torsion point). This was generalised by Cojocaru and Duke, and is also related to counting square-free elements of the sequence $a_p(E)^2-4p$,,which still resists a proof with the same techniques (without assuming results stronger than the GRH).
Finally, we also discuss some new distribution questions related to elliptic curves that are very similar to the questions that could be attacked with the Chebotarev density theorem, but are still completely open(for example, no non-trivial upper bounds exists). The first question was first considered by Silverman and Stange who defined an amicable pair of an elliptic curve $E/\mathbb{Q}$  to be a pair of primes $(p,q)$ such that
$p+1-a_p(E)=q$, and $q+1-a_q(E)=p$.
They predicted that the number of such pairs should be about $\sqrt{x}/log^2x$ for elliptic curves without complex multiplication. A precise conjecture with an explicit asymptotic was made by Jones, who also provided numerical evidence for his conjecture. Among the few results existing in the literature for thisquestion is the work of Parks who gave an upper bound of the correct order of magnitude for the average number (averaging over all elliptic curves) of amicable pairs (and aliquot cycles which are cycles of length $L$). But a non-trivial upper bound for a single elliptic curve is still not known.
Another completely open question is related to “champion primes”, which are primes $p$ such that $\#E(\mathbb{F}_p)$ is maximal, i.e. $a_p(E)=-[2\sqrt{p}]$. (This terminology was used for the first time by Hedetniemi, James andXue). In some work in progress with Wu, we make a conjecture and give some evidence for the number of champion primes associated to a given elliptic curve using the Sato-Tate conjecture (for verysmall intervals depending on $p$ i.e. in a range where the conjecture is still open). Again, this question iscompletely open, and there are no known non-trivial upper bound. There is also no numerical evidence for this question, and it would be nice to have some, possibly for more general “champion primes”, for examplelooking at $a_p(E)$ in a small interval of length $p^\varepsilon$ around $-[2\sqrt{p}]$.[-]
In all the following, let an elliptic curve $E$ defined over $\mathbb{Q}$ without complex multiplication. For every prime $\ell$, let $E[\ell]= E[\ell](\overline{\mathbb{Q}})$ be the group of  $\ell$-torsion points of  $E$, and let $K_\ell$  be the field extension obtained from $\mathbb{Q}$ by adding the coordinates of the $\ell$-torsion points of $E $. This is a Galois extension of$\mathbb{Q}$ , andGal$(K_\ell/\mathbb{Q})\subseteq GL_2...[+]

11G05 ; 11N36 ; 11F80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The Chebotarev density theorem - Stevenhagen, Peter (Auteur de la Conférence) | CIRM H

Single angle

We explain Chebotarev's theorem, which is The Fundamental Tool in proving whatever densities we have for sets of prime numbers, try to understand what makes it hard in the case of ifinite extensions, and see why such extensions arise in the case of primitive root problems.

11R45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The generalized Sato-Tate conjecture - Fité, Francesc (Auteur de la Conférence) | CIRM H

Single angle

This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the second talk, we present the Sato-Tate axiomatic, which leads us to some Lie group theoretic classification results. The last part of the talk is devoted to illustrate the methods involved in the proof of this kind of results by considering a concrete example. In the third and final talk, we present Banaszak and Kedlaya's algebraic version of the Sato-Tate conjecture, we describe the notion of Galois type of an abelian variety, and we establish the dictionary between Galois types and Sato-Tate groups of abelian surfaces defined over number fields.
generalized Sato-Tate conjecture - Sato-Tate group - equidistribution - Sato-Tate axioms - Galois type - Abelian surfaces - endomorphism algebra - Frobenius distributions[-]
This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the ...[+]

11M50 ; 11G10 ; 11G20 ; 14G10 ; 14K15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Spherical Hecke algebra, Satake transform, and an introduction to local Langlands correspondence.
CIRM - Chaire Jean-Morlet 2016 - Aix-Marseille Université

20C08 ; 22E50 ; 11S37

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Lecture 1: Distinction and the geometric lemma - Offen, Omer (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Lecture 2: Distinction by a symmetric subgroup - Offen, Omer (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Lecture 4: The relative trace formula - Offen, Omer (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Beyond endoscopy is the strategy put forward by Langlands for applying the trace formula to the general principle of functoriality. Subsequent papers by Langlands (one in collaboration with Frenkel and Ngo), together with more recent papers by Altug, have refined the strategy. They all emphasize the importance of understanding the elliptic terms on the geometric side of the trace formula. We shall discuss the general strategy, and how it pertains to these terms.[-]
Beyond endoscopy is the strategy put forward by Langlands for applying the trace formula to the general principle of functoriality. Subsequent papers by Langlands (one in collaboration with Frenkel and Ngo), together with more recent papers by Altug, have refined the strategy. They all emphasize the importance of understanding the elliptic terms on the geometric side of the trace formula. We shall discuss the general strategy, and how it ...[+]

11F66 ; 22E50 ; 22E55

Sélection Signaler une erreur