Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A theorem of Barbot (building on work of Ghys, Haefliger and others) says that Anosov flows on 3-manifolds are classified up to orbit equivalence by the data of a pair of transverse foliations of the plane and an action of the fundamental group of the 3-manifold. In recent work with T. Barthelmé, as well as C. Bonatti, S. Fenley and S. Frankel, we have been developing an abstract theory of Anosov-like group actions of bifoliated planes, applicable both to the study of flows and as an interesting class of foliation-preserving dynamical systems in its own right. This minicourse will explain some of this theory and the connections between flows and group actions in dimensions 1, 2 and 3.
[-]
A theorem of Barbot (building on work of Ghys, Haefliger and others) says that Anosov flows on 3-manifolds are classified up to orbit equivalence by the data of a pair of transverse foliations of the plane and an action of the fundamental group of the 3-manifold. In recent work with T. Barthelmé, as well as C. Bonatti, S. Fenley and S. Frankel, we have been developing an abstract theory of Anosov-like group actions of bifoliated planes, ...
[+]
37D05 ; 57M60 ; 57S25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will explain how to combine tools of local tropical geometry and logarithmic geometry in order to study the structure of Milnor fibers of smoothings of isolated complex singularities, up to homeomorphisms. I will partly follow the paper “The Milnor fiber conjecture of Neumann and Wahl, and an overview of its proof”, written in collaboration with Marıa Angelica Cueto and Dmitry Stepanov.This course replaces a course on the same topic that should have been delivered by Angelica Cueto.
[-]
I will explain how to combine tools of local tropical geometry and logarithmic geometry in order to study the structure of Milnor fibers of smoothings of isolated complex singularities, up to homeomorphisms. I will partly follow the paper “The Milnor fiber conjecture of Neumann and Wahl, and an overview of its proof”, written in collaboration with Marıa Angelica Cueto and Dmitry Stepanov.This course replaces a course on the same topic that ...
[+]
14B05 ; 14A21 ; 14M25 ; 14T90 ; 32S05 ; 32S55
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will explain how to combine tools of local tropical geometry and logarithmic geometry in order to study the structure of Milnor fibers of smoothings of isolated complex singularities, up to homeomorphisms. I will partly follow the paper “The Milnor fiber conjecture of Neumann and Wahl, and an overview of its proof”, written in collaboration with Marıa Angelica Cueto and Dmitry Stepanov.This course replaces a course on the same topic that should have been delivered by Angelica Cueto.
[-]
I will explain how to combine tools of local tropical geometry and logarithmic geometry in order to study the structure of Milnor fibers of smoothings of isolated complex singularities, up to homeomorphisms. I will partly follow the paper “The Milnor fiber conjecture of Neumann and Wahl, and an overview of its proof”, written in collaboration with Marıa Angelica Cueto and Dmitry Stepanov.This course replaces a course on the same topic that ...
[+]
14B05 ; 14A21 ; 14M25 ; 14T90 ; 32S05 ; 32S55
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Our goal is the study of the local dynamics of tangent to the identity biholomorphisms in C2, and more precisely of the existence of invariant manifolds. In the first lecture we will focus on the problem of existence of invariant curves for two-dimensional vector fields and present some classical results: Seidenberg's resolution of singularities, Briot-Bouquet theorem and Camacho-Sad theorem. In the second lecture we will present the first results of existence of 1-dimensional invariant manifolds for tangent to the identity biholomorphisms obtained by Ecalle/Hakim and Abate, connecting them to the corresponding results for vector fields. In the third lecture we will discuss two extensions of the previous results, obtained in collaboration with Jasmin Raissy, Fernando Sanz, Javier Ribon, Rudy Rosas and Liz Vivas.
[-]
Our goal is the study of the local dynamics of tangent to the identity biholomorphisms in C2, and more precisely of the existence of invariant manifolds. In the first lecture we will focus on the problem of existence of invariant curves for two-dimensional vector fields and present some classical results: Seidenberg's resolution of singularities, Briot-Bouquet theorem and Camacho-Sad theorem. In the second lecture we will present the first ...
[+]
37C25 ; 37F80 ; 32M25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Our goal is the study of the local dynamics of tangent to the identity biholomorphisms in C2, and more precisely of the existence of invariant manifolds. In the first lecture we will focus on the problem of existence of invariant curves for two-dimensional vector fields and present some classical results: Seidenberg's resolution of singularities, Briot-Bouquet theorem and Camacho-Sad theorem. In the second lecture we will present the first results of existence of 1-dimensional invariant manifolds for tangent to the identity biholomorphisms obtained by Ecalle/Hakim and Abate, connecting them to the corresponding results for vector fields. In the third lecture we will discuss two extensions of the previous results, obtained in collaboration with Jasmin Raissy, Fernando Sanz, Javier Ribon, Rudy Rosas and Liz Vivas.
[-]
Our goal is the study of the local dynamics of tangent to the identity biholomorphisms in C2, and more precisely of the existence of invariant manifolds. In the first lecture we will focus on the problem of existence of invariant curves for two-dimensional vector fields and present some classical results: Seidenberg's resolution of singularities, Briot-Bouquet theorem and Camacho-Sad theorem. In the second lecture we will present the first ...
[+]
37C25 ; 32M25 ; 37F80
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Our goal is the study of the local dynamics of tangent to the identity biholomorphisms in C2, and more precisely of the existence of invariant manifolds. In the first lecture we will focus on the problem of existence of invariant curves for two-dimensional vector fields and present some classical results: Seidenberg's resolution of singularities, Briot-Bouquet theorem and Camacho-Sad theorem. In the second lecture we will present the first results of existence of 1-dimensional invariant manifolds for tangent to the identity biholomorphisms obtained by Ecalle/Hakim and Abate, connecting them to the corresponding results for vector fields. In the third lecture we will discuss two extensions of the previous results, obtained in collaboration with Jasmin Raissy, Fernando Sanz, Javier Ribon, Rudy Rosas and Liz Vivas.
[-]
Our goal is the study of the local dynamics of tangent to the identity biholomorphisms in C2, and more precisely of the existence of invariant manifolds. In the first lecture we will focus on the problem of existence of invariant curves for two-dimensional vector fields and present some classical results: Seidenberg's resolution of singularities, Briot-Bouquet theorem and Camacho-Sad theorem. In the second lecture we will present the first ...
[+]
37C25 ; 32M25 ; 37F80
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We propose a mean field kinetic model for systems of rational agents interacting in a game theoretical framework. This model is inspired from non-cooperative anonymous games with a continuum of players and Mean-Field Games. The large time behavior of the system is given by a macroscopic closure with a Nash equilibrium serving as the local thermodynamic equilibrium. Applications of the presented theory to social and economical models will be given.
[-]
We propose a mean field kinetic model for systems of rational agents interacting in a game theoretical framework. This model is inspired from non-cooperative anonymous games with a continuum of players and Mean-Field Games. The large time behavior of the system is given by a macroscopic closure with a Nash equilibrium serving as the local thermodynamic equilibrium. Applications of the presented theory to social and economical models will be ...
[+]
91B80 ; 35Q82 ; 35Q91