En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

CEMRACS 149 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] is an ubiquitous theoretical framework for lowfrequency fusion plasma description. In this work we are using the field theory formulation of the modern gyrokinetics [1]. The main attention is focussed on derivation of the momentum conservation law via the Noether method, which allows to connect symmetries of the system with conserved quantities by means of the infinitesimal space-time translations and rotations.
Such an approach allows to consistently keep the gyrokinetic dynamical reduction effects into account and therefore leads towards a complete momentum transport equation.
Elucidating the role of the gyrokinetic polarization is one of the main results of this work. We show that the terms resulting from each step of the dynamical reduction (guiding-center and gyrocenter) should be consistently taken into account in order to establish physical meaning of the transported quantity. The present work [2] generalizes previous result obtained in [4] by taking into the account purely geometrical contributions into the radial polarization.[-]
The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] ...[+]

82D10 ; 82C40 ; 35L65 ; 35Q83 ; 70S10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we overview some of the challenges of cardiac modeling and simulation of the electrical depolarization of the heart. In particular, we will present a strategy allowing to avoid the 3D simulation of the thin atria depolarization but only solve an asymptotic consistent model on the mid-surface. In a second part, we present a strategy for estimating a cardiac electrophysiology model from front data measurements using sequential parallel data assimilation strategy.[-]
In this talk we overview some of the challenges of cardiac modeling and simulation of the electrical depolarization of the heart. In particular, we will present a strategy allowing to avoid the 3D simulation of the thin atria depolarization but only solve an asymptotic consistent model on the mid-surface. In a second part, we present a strategy for estimating a cardiac electrophysiology model from front data measurements using sequential ...[+]

92C30 ; 35Q92 ; 65C20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
When solving wave scattering problems with the Boundary Element Method (BEM), one usually faces the problem of storing a dense matrix of huge size which size is proportional to the (square of) the number N of unknowns on the boundary of the scattering object. Several methods, among which the Fast Multipole Method (FMM) or the H-matrices are celebrated, were developed to circumvent this obstruction. In both cases an approximation of the matrix is obtained with a O(N log(N)) storage and the matrix-vector product has the same complexity. This permits to solve the problem, replacing the direct solver with an iterative method.
The aim of the talk is to present an alternative method which is based on an accurate version of the Fourier based convolution. Based on the non-uniform FFT, the method, called the sparse cardinal sine decomposition (SCSD) ends up to have the same complexity than the FMM for much less complexity in the implementation. We show in practice how the method works, and give applications in as different domains as Laplace, Helmholtz, Maxwell or Stokes equations.
This is a joint work with Matthieu Aussal.[-]
When solving wave scattering problems with the Boundary Element Method (BEM), one usually faces the problem of storing a dense matrix of huge size which size is proportional to the (square of) the number N of unknowns on the boundary of the scattering object. Several methods, among which the Fast Multipole Method (FMM) or the H-matrices are celebrated, were developed to circumvent this obstruction. In both cases an approximation of the matrix is ...[+]

65T50 ; 65R10 ; 65T40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We first introduce the Metropolis-Hastings algorithm. We then consider the Random Walk Metropolis algorithm on $R^n$ with Gaussian proposals, and when the target probability measure is the $n$-fold product of a one dimensional law. It is well-known that, in the limit $n$ tends to infinity, starting at equilibrium and for an appropriate scaling of the variance and of the timescale as a function of the dimension $n$, a diffusive limit is obtained for each component of the Markov chain. We generalize this result when the initial distribution is not the target probability measure. The obtained diffusive limit is the solution to a stochastic differential equation nonlinear in the sense of McKean. We prove convergence to equilibrium for this equation. We discuss practical counterparts in order to optimize the variance of the proposal distribution to accelerate convergence to equilibrium. Our analysis confirms the interest of the constant acceptance rate strategy (with acceptance rate between 1/4 and 1/3).[-]
We first introduce the Metropolis-Hastings algorithm. We then consider the Random Walk Metropolis algorithm on $R^n$ with Gaussian proposals, and when the target probability measure is the $n$-fold product of a one dimensional law. It is well-known that, in the limit $n$ tends to infinity, starting at equilibrium and for an appropriate scaling of the variance and of the timescale as a function of the dimension $n$, a diffusive limit is obtained ...[+]

60J22 ; 60J10 ; 60G50 ; 60F17 ; 60J60 ; 60G09 ; 65C40 ; 65C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We describe and analyze the Multi-Index Monte Carlo (MIMC) and the Multi-Index Stochastic Collocation (MISC) method for computing statistics of the solution of a PDE with random data. MIMC is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Instead of using first-order differences as in MLMC, MIMC uses mixed differences to reduce the variance of the hierarchical differences dramatically. These mixed differences yield new and improved complexity results, which are natural generalizations of Giles's MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence. On the same vein, MISC is a deterministic combination technique based on mixed differences of spatial approximations and quadratures over the space of random data. Provided enough mixed regularity, MISC can achieve better complexity than MIMC. Moreover, we show that, in the optimal case, the convergence rate of MISC is only dictated by the convergence of the deterministic solver applied to a one-dimensional spatial problem. We propose optimization procedures to select the most effective mixed differences to include in MIMC and MISC. Such optimization is a crucial step that allows us to make MIMC and MISC computationally efficient. We show the effectiveness of MIMC and MISC in some computational tests using the mimclib open source library, including PDEs with random coefficients and Stochastic Interacting Particle Systems. Finally, we will briefly discuss the use of Markovian projection for the approximation of prices in the context of American basket options.[-]
We describe and analyze the Multi-Index Monte Carlo (MIMC) and the Multi-Index Stochastic Collocation (MISC) method for computing statistics of the solution of a PDE with random data. MIMC is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Instead of using first-order differences as in MLMC, ...[+]

65C30 ; 65C05 ; 60H15 ; 60H35 ; 35R60 ; 65M70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and computing, and the potential applications to economics and social sciences are numerous.
In the limit when $n \to +\infty$, a given agent feels the presence of the others through the statistical distribution of the states. Assuming that the perturbations of a single agent's strategy does not influence the statistical states distribution, the latter acts as a parameter in the control problem to be solved by each agent. When the dynamics of the agents are independent stochastic processes, MFGs naturally lead to a coupled system of two partial differential equations (PDEs for short), a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation.
The latter system of PDEs has closed form solutions in very few cases only. Therefore, numerical simulation are crucial in order to address applications. The present mini-course will be devoted to numerical methods that can be used to approximate the systems of PDEs.
The numerical schemes that will be presented rely basically on monotone approximations of the Hamiltonian and on a suitable weak formulation of the Fokker-Planck equation.
These schemes have several important features:

- The discrete problem has the same structure as the continous one, so existence, energy estimates, and possibly uniqueness can be obtained with the same kind of arguments

- Monotonicity guarantees the stability of the scheme: it is robust in the deterministic limit

- convergence to classical or weak solutions can be proved

Finally, there are particular cases named variational MFGS in which the system of PDEs can be seen as the optimality conditions of some optimal control problem driven by a PDE. In such cases, augmented Lagrangian methods can be used for solving the discrete nonlinear system. The mini-course will be orgamized as follows

1. Introduction to the system of PDEs and its interpretation. Uniqueness of classical solutions.

2. Monotone finite difference schemes

3. Examples of applications

4. Variational MFG and related algorithms for solving the discrete system of nonlinear equations[-]
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and ...[+]

49K20 ; 49N70 ; 35F21 ; 35K40 ; 35K55 ; 35Q84 ; 65K10 ; 65M06 ; 65M12 ; 91A23 ; 91A15

Sélection Signaler une erreur