En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11L07 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Primes, exponential sums, and L-functions - Banks, William (Author of the conference) | CIRM H

Multi angle

This talk will survey some recent directions in the study of prime numbers that rely on bounds of exponential sums and advances in sieve theory. I will also describe some new results on the Riemann zeta function and Dirichlet functions, and pose some open problems.

11L20 ; 11N05 ; 11L07 ; 11N36 ; 11S40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This is joint work with Jörg Thuswaldner from University of Leoben.

A linear recurrent number system is a generalization of the $q$-adic number system, where we replace the sequence of powers of $q$ by a linear recurrent sequence $G_{k+d}=a_1G_{k+d-1}+\cdots+a_dG_k$ for $k\geq 0$. Under some mild conditions on the recurrent sequence every positive integer $n$ has a representation of the form \[n=\sum_{j=0}^k \varepsilon_j(n)G_j.\]

The $q$-adic number system corresponds to the linear recursion $G_{k+1}=qG_k$ and $G_0=1$. The first example of a real generalization is due to Zeckendorf who showed that the Fibonacci sequence $G_0=1$, $G_1=2$, $G_{k+2}=G_{k+1}+G_k$ for $k\geq0$ yields a representation for each positive integer. This is unique if we additionally suppose that no two consecutive ones exist in the representation. Similar restrictions hold for different recurrent sequences and they build the essence of these number systems.

In the present talk we investigate the representation of primes and almost primes in linear recurrent number systems. We start by showing the different results due to Fouvry, Mauduit and Rivat in the case of $q$-adic number systems. Then we shed some light on their main tools and techniques. The heart of our considerations is the following Bombieri-Vinogradov type result
\[\sum_{q < x^{\vartheta-\varepsilon}}\max_{y < x}\max_{1\leq a\leq q} \left\vert\sum_{\substack{n< y,s_G(n)\equiv b\bmod d\\ n\equiv b\bmod q}}1 -\frac1q\sum_{n < y,s_G(n)\equiv b\bmod d}1\right\vert \ll x(\log 2x)^{-A},\]
which we establish under the assumption that $a_1\geq30$. This lower bound is due to numerical estimations. With this tool in hand we are able to show that \[ \left\vert\{n\leq x\colon s_G(n)\equiv b\bmod d, n=p_1\text{ or }n=p_1p_2\}\right\vert\gg \frac{x}{\log x}.\][-]
This is joint work with Jörg Thuswaldner from University of Leoben.

A linear recurrent number system is a generalization of the $q$-adic number system, where we replace the sequence of powers of $q$ by a linear recurrent sequence $G_{k+d}=a_1G_{k+d-1}+\cdots+a_dG_k$ for $k\geq 0$. Under some mild conditions on the recurrent sequence every positive integer $n$ has a representation of the form \[n=\sum_{j=0}^k \varepsilon_j(n)G_j.\]

The $q$-adic ...[+]

11A63 ; 11L07 ; 11N05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the digits of primes and squares - Rivat, Joël (Author of the conference) | CIRM H

Multi angle

I will give a survey of our results on the digits of primes and squares (joint works with Michael Drmota and Christian Mauduit).

11A63 ; 11L20 ; 11N60 ; 11N05 ; 11L07

Bookmarks Report an error