En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14C15 13 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss the new ?subtle? version of Stiefel-Whitney classes introduced by Alexander Smirnov and me. In contrast to the classical classes of Delzant and Milnor, our classes see the powers of the fundamental ideal, as well as the Arason invariant and its higher analogues, and permit to describe the motives of the torsor and the highest Grassmannian associated to a quadratic form. I will consider in more details the relation of these classes to the J-invariant of quadrics. This invariant defined in terms of rationality of the Chow group elements of the highest Grassmannian contains the most basic qualitative information on a quadric.[-]
I will discuss the new ?subtle? version of Stiefel-Whitney classes introduced by Alexander Smirnov and me. In contrast to the classical classes of Delzant and Milnor, our classes see the powers of the fundamental ideal, as well as the Arason invariant and its higher analogues, and permit to describe the motives of the torsor and the highest Grassmannian associated to a quadratic form. I will consider in more details the relation of these classes ...[+]

14F42 ; 14C15 ; 11E04 ; 11E81

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A variety X is stably rational if a product of X and some projective space is rational. There exists examples of stably rational non rational complex varieties. In this talk we will discuss recent series of examples of varieties, which are not stably rational and not even retract rational. The proofs involve studying the properties of Chow groups of zero-cycles and the diagonal decomposition. As concrete examples, we will discuss some quartic double solids (C. Voisin), quartic threefolds (a joint work with Colliot-Thélène), some hypersurfaces (Totaro) and others.[-]
A variety X is stably rational if a product of X and some projective space is rational. There exists examples of stably rational non rational complex varieties. In this talk we will discuss recent series of examples of varieties, which are not stably rational and not even retract rational. The proofs involve studying the properties of Chow groups of zero-cycles and the diagonal decomposition. As concrete examples, we will discuss some quartic ...[+]

14C15 ; 14M20 ; 14E08

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Decomposition of the diagonal and applications - Totaro, Burt (Author of the conference) | CIRM H

Multi angle

Decomposition of the diagonal is a basic method in the theory of algebraic cycles. The method relates the birational geometry of a variety to properties of the Chow groups. One recent application is that the Chow ring of a finite group can depend nontrivially on the base field, even for fields containing the algebraic closure of $Q$. Another application is that a very general complex hypersurface in $P^{n+1}$ of degree at least about 2n/3 is not stably rational.[-]
Decomposition of the diagonal is a basic method in the theory of algebraic cycles. The method relates the birational geometry of a variety to properties of the Chow groups. One recent application is that the Chow ring of a finite group can depend nontrivially on the base field, even for fields containing the algebraic closure of $Q$. Another application is that a very general complex hypersurface in $P^{n+1}$ of degree at least about 2n/3 is not ...[+]

14C15 ; 14C25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Stable rationality - Lecture 1 - Pirutka, Alena (Author of the conference) | CIRM H

Post-edited

Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational nonrational varieties. This problem remained open till 1970th, when three types of such examples were produced: cubic threefolds (Clemens and Griffiths), some quartic threefolds (Iskovskikh and Manin), and some conic bundles (Artin et Mumford). The last examples are even not stably rational. The stable rationality of the first two examples was not known.
In a recent work C. Voisin established that a double solid ramified along a very general quartic is not stably rational. Inspired by this work, we showed that many quartic solids are not stably rational (joint work with J.-L. Colliot-Thélène). More generally, B. Totaro showed that a very general hypersurface of degree d is not stably rational if d/2 is at least the smallest integer not smaller than (n+2)/3. The same method allowed us to show that the rationality is not a deformation invariant (joint with B. Hassett and Y. Tschinkel).
In this series of lectures, we will discuss the methods to obtain the results above: the universal properties of the Chow group of zero-cycles, the decomposition of the diagonal, and the specialization arguments.[-]
Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational ...[+]

14C15 ; 14C25 ; 14E08 ; 14H05 ; 14J70 ; 14M20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stable rationality - Lecture 3 - Pirutka, Alena (Author of the conference) | CIRM H

Multi angle

Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational nonrational varieties. This problem remained open till 1970th, when three types of such examples were produced: cubic threefolds (Clemens and Griffiths), some quartic threefolds (Iskovskikh and Manin), and some conic bundles (Artin et Mumford). The last examples are even not stably rational. The stable rationality of the first two examples was not known.
In a recent work C. Voisin established that a double solid ramified along a very general quartic is not stably rational. Inspired by this work, we showed that many quartic solids are not stably rational (joint work with J.-L. Colliot-Thélène). More generally, B. Totaro showed that a very general hypersurface of degree d is not stably rational if d/2 is at least the smallest integer not smaller than (n+2)/3. The same method allowed us to show that the rationality is not a deformation invariant (joint with B. Hassett and Y. Tschinkel).
In this series of lectures, we will discuss the methods to obtain the results above: the universal properties of the Chow group of zero-cycles, the decomposition of the diagonal, and the specialization arguments.[-]
Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational ...[+]

14C15 ; 14C25 ; 14E08 ; 14H05 ; 14J70 ; 14M20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Gonality and zero-cycles of abelian varieties - Voisin, Claire (Author of the conference) | CIRM H

Multi angle

The gonality of a variety is defined as the minimal gonality of curve sitting in the variety. We prove that the gonality of a very general abelian variety of dimension $g$ goes to infinity with $g$. We use for this a (straightforward) generalization of a method due to Pirola that we will describe. The method also leads to a number of other applications concerning $0$-cycles modulo rational equivalence on very general abelian varieties.

14C15 ; 14C25 ; 14J70 ; 14J28 ; 14H51 ; 14Kxx

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Following Grothendieck's vision that a motive of an algebraic variety should capture many of its cohomological invariants, Voevodsky introduced a triangulated category of motives which partially realises this idea. After describing some of the properties of this category, I explain how to define the motive of certain algebraic stacks. I will then focus on defining and studying the motive of the moduli stack of vector bundles on a smooth projective curve and show that this motive can be described in terms of the motive of this curve and its symmetric powers. If there is time, I will give a conjectural formula for this motive, and explain how this follows from a conjecture on the intersection theory of certain Quot schemes. This is joint work with Simon Pepin Lehalleur.[-]
Following Grothendieck's vision that a motive of an algebraic variety should capture many of its cohomological invariants, Voevodsky introduced a triangulated category of motives which partially realises this idea. After describing some of the properties of this category, I explain how to define the motive of certain algebraic stacks. I will then focus on defining and studying the motive of the moduli stack of vector bundles on a smooth ...[+]

14A20 ; 14C25 ; 14C15 ; 14D23 ; 14F42 ; 14H60 ; 18E30 ; 19E15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Hilbert schemes of K3 surfaces - Negut, Andrei (Author of the conference) | CIRM H

Multi angle

​We give a geometric representation theory proof of a mild version of the Beauville-Voisin Conjecture for Hilbert schemes of K3 surfaces, namely the injectivity of the cycle map restricted to the subring of Chow generated by tautological classes. Although other geometric proofs of this result are known, our approach involves lifting formulas of Lehn and Li-Qin-Wang from cohomology to Chow, and using them to quickly solve the problem by invoking the irreducibility criteria of Virasoro algebra modules, due to Feigin-Fuchs. Joint work with Davesh Maulik.[-]
​We give a geometric representation theory proof of a mild version of the Beauville-Voisin Conjecture for Hilbert schemes of K3 surfaces, namely the injectivity of the cycle map restricted to the subring of Chow generated by tautological classes. Although other geometric proofs of this result are known, our approach involves lifting formulas of Lehn and Li-Qin-Wang from cohomology to Chow, and using them to quickly solve the problem by invoking ...[+]

14C15 ; 14J28 ; 32J27 ; 17B68

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
When can one approximate a differentiable submanifold of a nonsingular real algebraic variety by nonsingular real algebraic subvarieties? I will explain new positive and negative results concerning this question.

14P05 ; 14C15 ; 13C40 ; 55N22

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
On s'intéresse à l'application cycle de Jannsen, à coefficients dans la cohomologie continue entière l-adique, sur les groupes de Chow de codimension 2. On passe en revue plusieurs travaux récents exhibant des éléments de torsion non nuls dans le noyau de cette application.

14C15

Bookmarks Report an error