En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14F30 11 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Local acyclicity in $p$-adic geometry - Scholze, Peter (Author of the conference) | CIRM H

Post-edited

Motivated by applications to the geometric Satake equivalence and in particular the construction of the fusion product, we define a notion of universally locally acyclic for rigid spaces and diamonds, and prove that it has the expected properties.

14G22 ; 11S37 ; 11F80 ; 14F30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

The category MF in the semistable case - Faltings, Gerd (Author of the conference) | CIRM H

Post-edited

For smooth schemes the category $MF$ (defined by Fontaine for DVR's) realises the "mysterious functor", and provides natural systems of coeffients for crystalline cohomology. We generalise it to schemes with semistable singularities. The new technical features consist mainly of different methods in commutative algebra

14F30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will show that there exists a correspondence between smooth $l$-adic sheaves and overconvergent $F$-isocrystals over a curve preserving the Frobenius eigenvalues. Moreover, we show the existence of $l$-adic companions associated to overconvergent $F$-isocrystals for smooth varieties.
Some part of the work is done jointly with Esnault.

12H25 ; 14F30 ; 14F10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Relative integral $p$-adic Hodge theory - Morrow, Matthew (Author of the conference) | CIRM H

Multi angle

Given a smooth scheme $X$ over the ring of integers of a $p$-adic field, we introduce the notion of a relative Breuil-Kisin-Fargues module $M$ on $X$. Each such $M$ simultaneously encodes the data of a lisse étale sheaf, a module with flat connection, and a crystal, whose cohomologies are then intertwined by a relative form of the $A_{inf}$ cohomology introduced in "Integral $p$-adic Hodge theory" by Bhatt-M-Scholze. They are moreover closely related to other work in relative $p$-adic Hodge theory, notably Faltings small generalised representations and his relative Fontaine Lafaille theory. Joint with Takeshi Tsuji.[-]
Given a smooth scheme $X$ over the ring of integers of a $p$-adic field, we introduce the notion of a relative Breuil-Kisin-Fargues module $M$ on $X$. Each such $M$ simultaneously encodes the data of a lisse étale sheaf, a module with flat connection, and a crystal, whose cohomologies are then intertwined by a relative form of the $A_{inf}$ cohomology introduced in "Integral $p$-adic Hodge theory" by Bhatt-M-Scholze. They are moreover closely ...[+]

14F20 ; 14F30 ; 14F40 ; 14D10 ; 14G20 ; 14G22 ; 11G25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Arithmetic of rank one local systems - Esnault, Hélène (Author of the conference) | CIRM H

Multi angle

Joint with Moritz Kerz. We study arithmetic subvarieties of the character variety of normal complex varieties defined over a field of finite type.

14D20 ; 14F05 ; 14F10 ; 14F30 ; 14K15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The Witt vector affine Grassmannian - Scholze, Peter (Author of the conference) | CIRM H

Multi angle

(joint with Bhargav Bhatt) We prove that the space of $W(k)$-lattices in $W(k)[1/p]^n$, for a perfect field $k$ of characteristic $p$, has a natural structure as an ind-(perfect scheme). This improves on recent results of Zhu by constructing a natural ample line bundle on the space of such lattices.

13F35 ; 14G22 ; 14F30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Any finite-dimensional p-adic representation of the absolute Galois group of a $p$-adic local field with imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen-Brinon. We generalize their construction to the fundamental group of a $p$-adic affine variety with a semi-stable chart, and prove that the module of Sen operators is canonically defined, independently of the choice of the chart. When the representation comes from a $Q_{p}$-representation of a $p$-adic Lie group quotient of the fundamental group, we describe its Lie algebra action in terms of the Sen operators, which is a generalization of a result of Sen-Ohkubo. These Sen operators can be extended continuously to certain infinite-dimensional representations. As an application, we prove that the geometric Sen operators annihilate locally analytic vectors, generalizing a result of Pan.[-]
Any finite-dimensional p-adic representation of the absolute Galois group of a $p$-adic local field with imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen-Brinon. We generalize their construction to the fundamental group of a $p$-adic affine variety with a semi-stable chart, and prove that the module of Sen operators is canonically defined, independently of the choice of the chart. When the ...[+]

11F80 ; 14F35 ; 14F30

Bookmarks Report an error