En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 22Exx 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $\mathfrak{h}$ be a finite dimensional real Leibniz algebra. Exactly as the linear dual space of a Lie algebra is a Poisson manifold with respect to the Kostant-Kirillov-Souriau (KKS) bracket, $\mathfrak{h}^*$ can be viewed as a generalized Poisson manifold. The corresponding bracket is roughly speaking the evaluation of the KKS bracket at $0$ in one variable. This (perhaps strange looking) bracket comes up naturally when quantizing $\mathfrak{h}^*$ in an analoguous way as one quantizes the dual of a Lie algebra. Namely, the product $X \vartriangleleft Y = exp(ad_X)(Y)$ can be lifted to cotangent level and gives than a symplectic micromorphism which can be quantized by Fourier integral operators. This is joint work with Benoit Dherin (2013). More recently, we developed with Charles Alexandre, Martin Bordemann and Salim Rivire a purely algebraic framework which gives the same star-product.[-]
Let $\mathfrak{h}$ be a finite dimensional real Leibniz algebra. Exactly as the linear dual space of a Lie algebra is a Poisson manifold with respect to the Kostant-Kirillov-Souriau (KKS) bracket, $\mathfrak{h}^*$ can be viewed as a generalized Poisson manifold. The corresponding bracket is roughly speaking the evaluation of the KKS bracket at $0$ in one variable. This (perhaps strange looking) bracket comes up naturally when quantizing ...[+]

53D55 ; 22Exx ; 81R60 ; 17A32

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss some super-rigidity results in the ”higher-rank to hyperbolic-like target” paradigm, and two applications of those: one to Monod-Shalom type rigidity for products of convergence groups, and another to a geometric question of classifying hyperbolic structures on some groups. Based on joint works with U.Bader, and another one with U.Bader. P.-E. Caprace, A. Sisto.

22Exx ; 37Dxx

Bookmarks Report an error