En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 52A27 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We present a list of counterexamples to conjectures in smooth convex coercive optimization. We will detail two extensions of the gradient descent method, of interest in machine learning: gradient descent with exact line search, and Bregman descent (also known as mirror descent). We show that both are non convergent in general. These examples are based on general smooth convex interpolation results. Given a decreasing sequence of convex compact sets in the plane, whose boundaries are Ck curves (k ¿ 1, arbitrary) with positive curvature, there exists a Ck convex function for which each set of the sequence is a sublevel set. The talk will provide proof arguments for this results and detail how it can be used to construct the anounced counterexamples.[-]
We present a list of counterexamples to conjectures in smooth convex coercive optimization. We will detail two extensions of the gradient descent method, of interest in machine learning: gradient descent with exact line search, and Bregman descent (also known as mirror descent). We show that both are non convergent in general. These examples are based on general smooth convex interpolation results. Given a decreasing sequence of convex compact ...[+]

52A41 ; 90C25 ; 52A10 ; 52A27

Bookmarks Report an error