Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
O-minimalism is the first-order theory of o-minimal structures, an important class of models of which are the ultraproducts of o-minimal structures. A complete axiomatization of o-minimalism is not known, but many results are already provable in the weaker theory DCTC given by definable completeness and type completeness (a small extension of local o-minimality). In DCTC, we can already prove how many results from o-minimality (dimension theory, monotonicity, Hardy structures) carry over to this larger setting upon replacing ‘finite' by ‘discrete, closed and bounded'. However, even then cell decomposition might fail, giving rise to a related notion of tame structures. Some new invariants also come into play: the Grothendieck ring is no longer trivial and the definable, discrete subsets form a totally ordered structure induced by an ultraproduct version of the Euler characteristic. To develop this theory, we also need another first-order property, the Discrete Pigeonhole Principle, which I cannot yet prove from DCTC. Using this, we can formulate a criterion for when an ultraproduct of o-minimal structures is again o-minimal.
[-]
O-minimalism is the first-order theory of o-minimal structures, an important class of models of which are the ultraproducts of o-minimal structures. A complete axiomatization of o-minimalism is not known, but many results are already provable in the weaker theory DCTC given by definable completeness and type completeness (a small extension of local o-minimality). In DCTC, we can already prove how many results from o-minimality (dimension theory, ...
[+]
03C64