En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Osorno, Angélica 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The classical Barratt-Priddy-Quillen theorem states that the $K$-theory spectrum of the category of finite sets and isomorphisms is equivalent to the sphere spectrum. A more general statement is that for an unbased space $X$, the suspension spectrum $\Sigma_{+}^{\infty} X$ is equivalent to the spectrum associated to the free $E_{\infty}$ space on $X$. In this talk we will present a categorical construction of the latter that is lax monoidal. This compatibility with multiplicative structures is necessary when using this functor to change enrichments, as in the work of Guillou-May.This is joint work with Bert Guillou, Peter May and Mona Merling.[-]
The classical Barratt-Priddy-Quillen theorem states that the $K$-theory spectrum of the category of finite sets and isomorphisms is equivalent to the sphere spectrum. A more general statement is that for an unbased space $X$, the suspension spectrum $\Sigma_{+}^{\infty} X$ is equivalent to the spectrum associated to the free $E_{\infty}$ space on $X$. In this talk we will present a categorical construction of the latter that is lax monoidal. ...[+]

19D23 ; 19L47 ; 55P48

Bookmarks Report an error