En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Stark, Emily 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Given an automorphism of the free group, we consider the mapping torus defined with respect to the automorphism. If the automorphism is atoroidal, then the resulting free-by-cyclic group is hyperbolic by work of Brinkmann. In addition, if the automorphism is fully irreducible, then work of Kapovich-Kleiner proves the boundary of the group is homeomorphic to the Menger curve. However, their proof is very general and gives no tools to further study the boundary and large-scale geometry of these groups. In this talk, I will explain how to construct explicit embeddings of non-planar graphs into the boundary of these groups whenever the group is hyperbolic. Along the way, I will illustrate how our methods distinguish free-by-cyclic groups which are the fundamental group of a 3-manifold. This is joint work with Yael Algom-Kfir and Arnaud Hilion.[-]
Given an automorphism of the free group, we consider the mapping torus defined with respect to the automorphism. If the automorphism is atoroidal, then the resulting free-by-cyclic group is hyperbolic by work of Brinkmann. In addition, if the automorphism is fully irreducible, then work of Kapovich-Kleiner proves the boundary of the group is homeomorphic to the Menger curve. However, their proof is very general and gives no tools to further ...[+]

20F65 ; 20F67 ; 20E36

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The relationship between the large-scale geometry of a group and its algebraic structure can be studied via three notions: a group's quasi-isometry class, a group's abstract commensurability class, and geometric actions on proper geodesic metric spaces. A common model geometry for groups G and G' is a proper geodesic metric space on which G and G' act geometrically. A group G is action rigid if every group G' that has a common model geometry with G is abstractly commensurable to G. For example, a closed hyperbolic n-manifold is not action rigid for all n at least three. In contrast, we show that free products of closed hyperbolic manifold groups are action rigid. Consequently, we obtain the first examples of Gromov hyperbolic groups that are quasi-isometric but do not virtually have a common model geometry. This is joint work with Daniel Woodhouse.[-]
The relationship between the large-scale geometry of a group and its algebraic structure can be studied via three notions: a group's quasi-isometry class, a group's abstract commensurability class, and geometric actions on proper geodesic metric spaces. A common model geometry for groups G and G' is a proper geodesic metric space on which G and G' act geometrically. A group G is action rigid if every group G' that has a common model geometry ...[+]

20F65 ; 20F67 ; 20E06 ; 57M07 ; 57M10

Bookmarks Report an error