En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Pasten, Hector 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will explain some new connections between the $abc$ conjecture and modular forms. In particular, I will outline a proof of a new unconditional estimate for the $abc$ conjecture, which lies beyond the existing techniques in this context. The proof involves a number of tools such as Shimura curves, CM points, analytic number theory, and Arakelov geometry. It also requires some intermediate results of independent interest, such as bounds for the Manin constant beyond the semi-stable case. If time permits, I will also explain some results towards Szpiro's conjecture over totally real number fields which are compatible with the discriminant term appearing in Vojta's conjecture for algebraic points of bounded degree.[-]
I will explain some new connections between the $abc$ conjecture and modular forms. In particular, I will outline a proof of a new unconditional estimate for the $abc$ conjecture, which lies beyond the existing techniques in this context. The proof involves a number of tools such as Shimura curves, CM points, analytic number theory, and Arakelov geometry. It also requires some intermediate results of independent interest, such as bounds for the ...[+]

11G18 ; 11F11 ; 11G05 ; 14G40

Bookmarks Report an error