En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Knizel, Alisa 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study a general class of log-gas ensembles on a quadratic lattice. Using a variational principle we prove that the corresponding empirical measures satisfy a law of large numbers and that their global fluctuations are Gaussian with a universal covariance.
We apply our general results to analyze the asymptotic behavior of a q-boxed plane partition model introduced by Borodin, Gorin and Rains. In particular, we show that the global fluctuations of the height function on a fixed slice are described by a one-dimensional section of a pullback of the two-dimensional Gaussian free field.
Our approach is based on a q-analogue of the Schwinger-Dyson (or loop) equations, which originate in the work of Nekrasov and his collaborators, and extends the methods developed by Borodin, Gorin and Guionnet to a quadratic lattice.
Based on joint work with Evgeni Dimitrov[-]
We study a general class of log-gas ensembles on a quadratic lattice. Using a variational principle we prove that the corresponding empirical measures satisfy a law of large numbers and that their global fluctuations are Gaussian with a universal covariance.
We apply our general results to analyze the asymptotic behavior of a q-boxed plane partition model introduced by Borodin, Gorin and Rains. In particular, we show that the global fluctuations ...[+]

60K35 ; 82C22

Bookmarks Report an error