En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Benini, Anna Miriam 27 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quadratic polynomials - Bartholdi, Laurent (Author of the conference) | CIRM H

Multi angle

Quadratic polynomials have been investigated since the beginnings of complex dynamics, and are often approached through combinatorial theories such as laminations or Hubbard trees. I will explain how both of these approaches fit in a more algebraic framework: that of iterated monodromy groups. The invariant associated with a quadratic polynomial is a group acting on the infinite binary tree, these groups are interesting in their own right, and provide insight and structure to complex dynamics: I will explain in particular how the conversion between Hubbard trees and external angles amounts to a change of basis, how the limbs and wakes may be defined in the language of group theory, and present a model of the Mandelbrot set consisting of groups. This is joint work with Dzmitry Dudko and Volodymyr Nekrashevych.[-]
Quadratic polynomials have been investigated since the beginnings of complex dynamics, and are often approached through combinatorial theories such as laminations or Hubbard trees. I will explain how both of these approaches fit in a more algebraic framework: that of iterated monodromy groups. The invariant associated with a quadratic polynomial is a group acting on the infinite binary tree, these groups are interesting in their own right, and ...[+]

37F10 ; 20E08 ; 37B10 ; 37C25 ; 37F45

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Polynomial versus transcendental dynamics - Benini, Anna Miriam (Author of the conference) | CIRM H

Multi angle

In this first lecture we will introduce some the main differences between the dynamics of polynomials and the dynamics of transcendental entire functions: Baker and wandering domains, the new features of the escaping set, new features in the Julia set and some information about parameter spaces for some specific classes of entire functions.

37F10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Transcendental functions with small singular sets - Bishop, Christopher (Author of the conference) | CIRM H

Virtualconference

I will introduce the Speiser and Eremenko-Lyubich classes of transcendental entire functions and give a brief review of quasiconformal maps and the measurable Riemann mapping theorem. I will then discuss tracts and models for the Eremenko-Lyubich class and state the theorem that all topological tracts can occur in this class. A more limited result for the Speiser class will also be given. I will then discuss some applications of these ideas, focusing on recent work with Kirill Lazebnik (prescribing postsingular orbits of meromorphic functions) and Lasse Rempe (equilateral triangulations of Riemann surfaces).[-]
I will introduce the Speiser and Eremenko-Lyubich classes of transcendental entire functions and give a brief review of quasiconformal maps and the measurable Riemann mapping theorem. I will then discuss tracts and models for the Eremenko-Lyubich class and state the theorem that all topological tracts can occur in this class. A more limited result for the Speiser class will also be given. I will then discuss some applications of these ideas, ...[+]

30D20 ; 37F10 ; 30F99

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In complex dynamics it is usually important to understand the dynamical behavior of critical (or singular) orbits. For quadratic polynomials, this leads to the study of the Mandelbrot set and of its complement. In our talk we present a classification of some explicit families of the transcendental entire functions for which all singular values escape, i.e. functions belonging to the complement of the 'transcendental analogue' of the Mandelbrot set. This classification allows us to introduce higher dimensional analogues of parameter rays and to explore their properties. A key ingredient is a generalization of the famous Thurston's Topological Characterization of Rational Functions, but for the case of infinite rather than finite postsingular set. Analogously to Thurston's theorem, we consider the sigma-iteration on the Teichmüller space and investigate its convergence. Unlike the classical case, the underlying Teichmüller space is infinite-dimensional which leads to a completely different theory.[-]
In complex dynamics it is usually important to understand the dynamical behavior of critical (or singular) orbits. For quadratic polynomials, this leads to the study of the Mandelbrot set and of its complement. In our talk we present a classification of some explicit families of the transcendental entire functions for which all singular values escape, i.e. functions belonging to the complement of the 'transcendental analogue' of the Mandelbrot ...[+]

37F20 ; 37F34

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Fatou noticed in 1926 that certain transcendental entire functions have Julia sets in which there are curves of points that escape to infinity under iteration and he wondered whether this might hold for a more general class of functions. In 1989, Eremenko carried out an investigation of the escaping set of a transcendental entire function f, $I(f)=\left \{ z\in\mathbb{C}:\left | f^{n}\left ( z \right ) \right | \rightarrow \infty \right \}$ and produced a conjecture with a weak and a strong form. The strong form asks if every point in the escaping set of an arbitrary transcendental entire function can be joined to infinity by a curve in the escaping set.
This was answered in the negative by the 2011 paper of Rottenfusser, Rückert, Rempe, and Schleicher (RRRS) by constructing a tract that produces a function that cannot contain such a curve. In the same paper, it was also shown that if the function was of finite order, that is, log log $\left | f\left ( z \right ) \right |= \mathcal{O}\left ( log\left | z \right | \right )$ as $\left | z \right |\rightarrow \infty$, then every point in the escaping set can indeed be connected to infinity by a curve in the escaping set.
The counterexample $f$ used in the RRRS paper has growth such that log log $\left | f\left ( z \right ) \right |= \mathcal{O}\left ( log\left | z \right | \right )^{k}$ where $K > 12$ is an arbitrary constant. The question is, can this exponent, K, be decreased and can explicit calculations and counterexamples be performed and constructed that improve on this?[-]
Fatou noticed in 1926 that certain transcendental entire functions have Julia sets in which there are curves of points that escape to infinity under iteration and he wondered whether this might hold for a more general class of functions. In 1989, Eremenko carried out an investigation of the escaping set of a transcendental entire function f, $I(f)=\left \{ z\in\mathbb{C}:\left | f^{n}\left ( z \right ) \right | \rightarrow \infty \right \}$ and ...[+]

37F10 ; 37F15 ; 37F50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we present a toy model for the (sector) renormalisation of holomorphic maps with an irrationally indifferent fixed points. The model depends on the arithmetic of the rotation number at the fixed point, and exhibits the geometry of a non-degenerate holomorphic map with an irrationally indifferent fixed point. We present some sufficient conditions on a give (sector) renormalisation which guarantees the underlying map has the same dynamics as the one of the toy model.[-]
In this talk we present a toy model for the (sector) renormalisation of holomorphic maps with an irrationally indifferent fixed points. The model depends on the arithmetic of the rotation number at the fixed point, and exhibits the geometry of a non-degenerate holomorphic map with an irrationally indifferent fixed point. We present some sufficient conditions on a give (sector) renormalisation which guarantees the underlying map has the same ...[+]

37FXX ; 30Cxx ; 11Dxx

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Box renormalization as a 'black box' - Drach, Kostiantyn (Author of the conference) | CIRM H

Multi angle

The concept of a complex box mapping (or puzzle mapping) is a generalization of the classical notion of polynomial-like map to the case when one allows for countably many components in the domain and finitely many components in the range of the mapping. In one-dimensional dynamics, box mappings appear naturally as first return maps to certain nice sets, and hence one arrives at a notion of box renormalization. We say that a rational map is box renormalizable if the first return map to a well-chosen neighborhood of the set of critical points (intersecting the Julia set) has a structure of a box mapping. In our talk, we will discuss various features of general box mappings, as well as so-called dynamically natural box mappings, focusing on their rigidity properties. We will then show how these results can be used almost as 'black boxes' to conclude similar rigidity properties for box renormalizable rational maps. We will give several examples to illustrate this procedure, these examples include, most prominently, complex polynomials of arbitrary degree and their Newton maps. (The talk is based on joint work with Trevor Clark, Oleg Kozlovski, Dierk Schleicher and Sebastian van Strien.)[-]
The concept of a complex box mapping (or puzzle mapping) is a generalization of the classical notion of polynomial-like map to the case when one allows for countably many components in the domain and finitely many components in the range of the mapping. In one-dimensional dynamics, box mappings appear naturally as first return maps to certain nice sets, and hence one arrives at a notion of box renormalization. We say that a rational map is box ...[+]

37F10 ; 37F31 ; 37F46

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Near-degenerate regime in neutral renormalization - Dudko, Dzmitry (Author of the conference) | CIRM H

Virtualconference

A fundamental fact about Riemann surfaces is that they degenerate in a specific pattern — along thin annuli or wide rectangles. As it was demonstrated by W. Thurston in his realization theorem, we can often understand the dynamical system by establishing a priori bounds (a non-escaping property) in the near-degenerate regime. Similar ideas were proven to be successful in the Renormalization Theory of the Mandelbrot set. We will start the talk by discussing a dictionary between Thurston and Renormalization theories. Then we will proceed to neutral renormalization associated with the main cardioid of the Mandelbrot set. We will show how the Transcendental Dynamics naturally appear on the renormalization unstable manifolds. In conclusion, we will describe uniform a priori bounds for neutral renormalization — joint work with Misha Lyubich.[-]
A fundamental fact about Riemann surfaces is that they degenerate in a specific pattern — along thin annuli or wide rectangles. As it was demonstrated by W. Thurston in his realization theorem, we can often understand the dynamical system by establishing a priori bounds (a non-escaping property) in the near-degenerate regime. Similar ideas were proven to be successful in the Renormalization Theory of the Mandelbrot set. We will start the talk by ...[+]

37FXX

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we study real analytic bi-cubic circle maps with bounded type rotation number. We define a suitable functional space where the renormalization operator is analytic, and we construct a hyperbolic attractor of renormalization with codimension-two stable foliation. This is joint work with Michael Yampolsky.

37E10 ; 37F25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Decomposition results in rational dynamics - Hlushchanka, Mikhail (Author of the conference) | CIRM H

Multi angle

There are various classical and more recent decomposition results in mapping class group theory, geometric group theory, and complex dynamics (which include celebrated results by Bill Thurston). We will discuss several natural decompositions that arise in the study of rational maps, such as Pilgrim's canonical decomposition and Levy decomposition (by Bartholdi and Dudko). I will also introduce a new decomposition of rational maps based on the topology of their Julia sets (obtained jointly with Dima Dudko and Dierk Schleicher). At the end of the talk, we will briefly consider connections of this novel decomposition to geometric group theory and self-similar groups.[-]
There are various classical and more recent decomposition results in mapping class group theory, geometric group theory, and complex dynamics (which include celebrated results by Bill Thurston). We will discuss several natural decompositions that arise in the study of rational maps, such as Pilgrim's canonical decomposition and Levy decomposition (by Bartholdi and Dudko). I will also introduce a new decomposition of rational maps based on the ...[+]

37F10 ; 37F20 ; 37B10 ; 37B40 ; 20F67 ; 20E08

Bookmarks Report an error