En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11F30 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Beyond endoscopy - Sakellaridis, Yiannis (Auteur de la conférence) | CIRM H

Virtualconference

I will give an overview of part of the “Beyond Endoscopy” program, from the thesis of Venkatesh up to ongoing joint work with Chen Wan which aims to remove the non-Ramanujan spectrum from the Arthur–Selberg trace formula by means of a comparison with the Kuznetsov formula.

11F72 ; 11F30 ; 11F67 ; 22E50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Fourier coefficients of meromorphic Jacobi forms - Zwegers, Sander (Auteur de la conférence) | CIRM H

Multi angle

Fourier coefficients of meromorphic Jacobi forms show up in, for example, the study of mock theta functions, quantum black holes and Kac-Wakimoto characters. In the case of positive index, it was previously shown that they are the holomorphic parts of vector-valued almost harmonic Maass forms. In this talk, we give an alternative characterization of these objects by applying the Maass lowering operator to the completions of the Fourier coefficients. Further, we'll also describe the relation of Fourier coefficients of negative index Jacobi forms to partial theta functions.[-]
Fourier coefficients of meromorphic Jacobi forms show up in, for example, the study of mock theta functions, quantum black holes and Kac-Wakimoto characters. In the case of positive index, it was previously shown that they are the holomorphic parts of vector-valued almost harmonic Maass forms. In this talk, we give an alternative characterization of these objects by applying the Maass lowering operator to the completions of the Fourier ...[+]

11F27 ; 11F30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Siegel introduced generalised theta series to study representation numbers of quadratic forms. Given an integral lattice $L$ with quadratic form $q$, Siegel's degree $n$ theta series attached to $L$ has a Fourier expansion supported on $n$-dimensional lattices, with Fourier coefficients that tells us how many times $L$ represents any given $n$-dimensional lattice. Siegel proved that this theta series is a type of automorphic form.
In this talk we explore how the theory of automorphic forms, together with the theory of quadratic forms, helps us understand these representation numbers. We reveal arithmetic relations between ”average” representation numbers (where we average over a genus), and finally we give an explicit formula for these average representation numbers in terms of the Fourier coefficients of Siegel Eisenstein series. In the case that $n = 1$ (meaning we are looking at how often $L$ represents an integer) this yields explicit numerical formulas for these average representation numbers.[-]
Siegel introduced generalised theta series to study representation numbers of quadratic forms. Given an integral lattice $L$ with quadratic form $q$, Siegel's degree $n$ theta series attached to $L$ has a Fourier expansion supported on $n$-dimensional lattices, with Fourier coefficients that tells us how many times $L$ represents any given $n$-dimensional lattice. Siegel proved that this theta series is a type of automorphic form.
In this talk ...[+]

11F27 ; 11F30 ; 11F46

Sélection Signaler une erreur