En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11R06 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Equidistribution of roots of unity and the Mahler measure - Habegger, Philipp (Auteur de la conférence) | CIRM H

Virtualconference

Roots of unity of order dividing $n$ equidistribute around the unit circle as $n$ tends to infinity. With some extraeffort the same can be shown when restricting to roots of unity of exact order $n$. Equidistribution is measured by comparing the average of a continuous test function evaluated at these roots of unity with the integral over the complex unit circle. Baker, Ih, and Rumely extended this to test function with logarithmic singularities of the form $\log|P|$ where $P$ is a univariate polynomial in algebraic coefficients. I will discuss joint work with Vesselin Dimitrov where we allow $P$ to come from a class of a multivariate polynomials, extending a result of Lind, Schmidt, and Verbitskiy. Our method draws from earlier work of Duke.[-]
Roots of unity of order dividing $n$ equidistribute around the unit circle as $n$ tends to infinity. With some extraeffort the same can be shown when restricting to roots of unity of exact order $n$. Equidistribution is measured by comparing the average of a continuous test function evaluated at these roots of unity with the integral over the complex unit circle. Baker, Ih, and Rumely extended this to test function with logarithmic singularities ...[+]

11J83 ; 11R06 ; 14G40 ; 37A45 ; 37P30

Sélection Signaler une erreur