Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The KSBA moduli space of stable pairs ($\mathrm{X}, \mathrm{B}$), introduced by Kollár-Shepherd-Barron, and Alexeev, is a natural generalization of the moduli space of stable curves for higher dimensional varieties. This moduli space is described concretely only in a handful of situations. For instance, if $\mathrm{X}$ is a toric variety and $\mathrm{B}=\mathrm{D}+\varepsilon\mathrm{C}_{}^{}$, where D is the toric boundary divisor and $\mathrm{C}$ is an ample divisor, it is shown by Alexeev that the KSBA moduli space is a toric variety. More generally,for stable pairs of the form$\left( \mathrm{{X,D}+\varepsilon\mathrm{C}} \right)$ with $\left( \mathrm{X,D} \right)$ a log Calabi–Yau variety and C an ample divisor, it was conjectured by Hacking–Keel–Yu that the KSBA moduli space is still toric, up to passing to a finite cover. In joint work with Alexeev and Bousseau, we prove this conjecture for all log Calabi-Yau surfaces. This uses tools from the minimal model program, log geometry and mirror symmetry.
[-]
The KSBA moduli space of stable pairs ($\mathrm{X}, \mathrm{B}$), introduced by Kollár-Shepherd-Barron, and Alexeev, is a natural generalization of the moduli space of stable curves for higher dimensional varieties. This moduli space is described concretely only in a handful of situations. For instance, if $\mathrm{X}$ is a toric variety and $\mathrm{B}=\mathrm{D}+\varepsilon\mathrm{C}_{}^{}$, where D is the toric boundary divisor and $...
[+]
14D20 ; 14E30 ; 14Q10