En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 42A38 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Si $f$ est une fonction somme d'une séries trigonométrique lacunaire, elle est bien définie quand on donne sa restriction à un petit intervalle. Mais comment l'obtenir à partir de cette restriction ? C'est possible par un procédé d'analyse convexe, à savoir le prolongement minimal dans l'algèbre de Wiener. Ce prolongement minimal est la clé de l'echantillonnage parcimonieux (compressed sensing) exposé par Emmanuel Candès dans l'ICM de Zurich 2006 et dans un article de Candès, Romberg et Tao de la même année ; je donnerai un aperçu de variantes dans les méthodes et les résultats que j'ai publiés en 2013 dans les Annales de l'Institut Fourier.[-]
Si $f$ est une fonction somme d'une séries trigonométrique lacunaire, elle est bien définie quand on donne sa restriction à un petit intervalle. Mais comment l'obtenir à partir de cette restriction ? C'est possible par un procédé d'analyse convexe, à savoir le prolongement minimal dans l'algèbre de Wiener. Ce prolongement minimal est la clé de l'echantillonnage parcimonieux (compressed sensing) exposé par Emmanuel Candès dans l'ICM de Zurich ...[+]

42A38 ; 42A55 ; 42A61 ; 65T50 ; 94A12 ; 94A20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A Herglotz-Nevanlinna function is a holomorphic function $f$, defined in the upper half-plane $\mathbb{H}:=\{z \in \mathbb{C} \mid \Im z>0\}$, such that $\Im f(z) \geq 0$ for all $z \in \mathbb{H}$, and they are the functions in focus at the present conference. These functions are also called Pick functions, and they are characterized as the functions of the form$$f(z)=\alpha z+\beta+\int_{-\infty}^{\infty} \frac{t z+1}{t-z} d \tau(t), \quad z \in \mathbb{H}$$where $\alpha \geq 0, \beta \in \mathbb{R}$ and $\tau$ is a positive finite measure on $\mathbb{R}$.
Since $\mathbb{H}$ is a simply connected domain, caracterization of this class of functions is the same as characterization of the set of non-negative harmonic functions in $\mathbb{H}$ and by conformal mapping this set is in one-to-one correspondence with the set of non-negative harmonic functions in the unit disc.
We shall discuss various subclasses of Pick functions and their relation to other important classes of functions such as the completely monotonic functions and the subclass of Stieltjes functions. We recall that these classes are the functions $f:] 0, \infty[\rightarrow \mathbb{R}$ of the form$$f(x)=\int_{0}^{\infty} e^{-s x} d \mu(s), \quad \text { resp. } f(x)=a+\int_{0}^{\infty} \frac{d \mu(s)}{x+s}$$where $a \geq 0$ and $\mu$ is a non-negative measure on $[0, \infty[$.At the 7 th OPSFA, Copenhagen 2003 , we posed the problem of determining the largest value $\alpha=\alpha^{*}>0$ for which $f_{\alpha}(x)=e^{\alpha}-(1+1 / x)^{\alpha x}, x>0$ is a completely monotonic function, and it was noticed that $1 \leq \alpha^{*}<3$ and that graphs suggested that $\alpha^{*}>2$. The value has now been calculated with 20 decimals starting with $\alpha^{*} \approx 2.29965$.This is based on a recent result obtained in collaboration with Massa and Peron from Brazil. We have found a family $\varphi_{\alpha}, \alpha>0$ of entire functions such that$$f_{\alpha}(x)=\int_{0}^{\infty} e^{-s x} \varphi_{\alpha}(s) d s, \quad x>0 .$$We showed that each function $\varphi_{\alpha}$ has an alternating power series expansion, whose coefficients are determined as an explicit sequence of polynomials in $\alpha$. It is therefore possible to calculate as accurately as desired for which values of $\alpha$ the function $\varphi_{\alpha}$ is non-negative on $\left[0, \infty\left[\right.\right.$. It turned out that the functions $\varphi_{\alpha}$ are 'close' to the well known Bessel function $J_{1}$ when $\alpha$ is large, and 'close' to the Lambert $W$ function, when $\alpha$ is small.[-]
A Herglotz-Nevanlinna function is a holomorphic function $f$, defined in the upper half-plane $\mathbb{H}:=\{z \in \mathbb{C} \mid \Im z>0\}$, such that $\Im f(z) \geq 0$ for all $z \in \mathbb{H}$, and they are the functions in focus at the present conference. These functions are also called Pick functions, and they are characterized as the functions of the form$$f(z)=\alpha z+\beta+\int_{-\infty}^{\infty} \frac{t z+1}{t-z} d \tau(t), \quad z ...[+]

26A48 ; 30E20 ; 42A38

Sélection Signaler une erreur