En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 55N33 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
An oriented manifold possesses an L-homology fundamental class which is an integral refinement of its Hirzebruch L-class and assembles to the symmetric signature. In joint work with Gerd Laures and James McClure, we give a construction of such an L-homology fundamental class for those oriented singular spaces, which are integral intersection homology Poincaré spaces. Our approach constructs a morphism of ad theories from intersection Poincaré bordism to L-theory. We shall indicate an application to the stratified Novikov conjecture. The latter has been treated analytically by Albin, Leichtnam, Mazzeo and Piazza.[-]
An oriented manifold possesses an L-homology fundamental class which is an integral refinement of its Hirzebruch L-class and assembles to the symmetric signature. In joint work with Gerd Laures and James McClure, we give a construction of such an L-homology fundamental class for those oriented singular spaces, which are integral intersection homology Poincaré spaces. Our approach constructs a morphism of ad theories from intersection Poincaré ...[+]

55N33 ; 57R67 ; 57R20 ; 57N80 ; 19G24

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

$L^2$-cohomology and the theory of weights - Saper, Leslie (Auteur de la conférence) | CIRM H

Multi angle

The intersection cohomology of a complex projective variety $X$ agrees with the usual cohomology if $X$ is smooth and satisfies Poincare duality even if $X$ is singular. It has been proven in various contexts (and conjectured in more) that the intersection cohomology may be represented by the $L^2$- cohomology of a Kähler metric defined on the smooth locus of $X$. The various proofs, though different, often depend on a notion of weight which manifests itself either through representation theory, Hodge theory, or metrical decay. In this talk we discuss the relations between these notions of weight and report on new work in this direction.[-]
The intersection cohomology of a complex projective variety $X$ agrees with the usual cohomology if $X$ is smooth and satisfies Poincare duality even if $X$ is singular. It has been proven in various contexts (and conjectured in more) that the intersection cohomology may be represented by the $L^2$- cohomology of a Kähler metric defined on the smooth locus of $X$. The various proofs, though different, often depend on a notion of weight which ...[+]

14F43 ; 55N33

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Reidemeister torsion was the first topological invariant that could distinguish between spaces which were homotopy equivalent but not homeomorphic. The Cheeger-Müller theorem established that the Reidemeister torsion of a closed manifold can be computed analytically. I will report on joint work with Frédéric Rochon and David Sher on finding a topological expression for the analytic torsion of a manifold with fibered cusp ends. Examples of these manifolds include most locally symmetric spaces of rank one. We establish our theorem by controlling the behavior of analytic torsion as a space degenerates to form hyperbolic cusp ends.[-]
Reidemeister torsion was the first topological invariant that could distinguish between spaces which were homotopy equivalent but not homeomorphic. The Cheeger-Müller theorem established that the Reidemeister torsion of a closed manifold can be computed analytically. I will report on joint work with Frédéric Rochon and David Sher on finding a topological expression for the analytic torsion of a manifold with fibered cusp ends. Examples of these ...[+]

58J52 ; 58J05 ; 58J50 ; 58J35 ; 55N25 ; 55N33

Sélection Signaler une erreur