En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 60F05 23 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Consider two ancestral lineages sampled from a system of two-dimensional branching random walks with logistic regulation in the stationary regime. We study the asymptotics of their coalescence time for large initial separation and find that it agrees with well known results for a suitably scaled two-dimensional stepping stone model and also with Malécot's continuous-space approximation for the probability of identity by descent as a function of sampling distance.
This can be viewed as a justification for the replacement of locally fluctuating population sizes by fixed effective sizes. Our main tool is a joint regeneration construction for the spatial embeddings of the two ancestral lineages.[-]
Consider two ancestral lineages sampled from a system of two-dimensional branching random walks with logistic regulation in the stationary regime. We study the asymptotics of their coalescence time for large initial separation and find that it agrees with well known results for a suitably scaled two-dimensional stepping stone model and also with Malécot's continuous-space approximation for the probability of identity by descent as a function of ...[+]

60K35 ; 92D25 ; 92D10 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk will focus on the fluctuations of a linear spectral statistic around its mean for $P\left(W_N, D_N\right)$ where $P$ is a polynomial, $W_N$ a Wigner matrix and $D_N$ a deterministic diagonal matrix. I will first consider the case when $P\left(W_N,D_N\right)=W_N+D_N$, based on a joint work with M. Février (U. Paris-Saclay). In the general case of $P$ a selfadjoint noncommutative polynomial, I will present results for the special case of the Stieltjes transform, based on a joint work with S. Belinschi (CNRS, U. Toulouse), M. Capitaine (CNRS,U. Toulouse) and M. Février (U. Paris-Saclay).[-]
This talk will focus on the fluctuations of a linear spectral statistic around its mean for $P\left(W_N, D_N\right)$ where $P$ is a polynomial, $W_N$ a Wigner matrix and $D_N$ a deterministic diagonal matrix. I will first consider the case when $P\left(W_N,D_N\right)=W_N+D_N$, based on a joint work with M. Février (U. Paris-Saclay). In the general case of $P$ a selfadjoint noncommutative polynomial, I will present results for the special case of ...[+]

60B20 ; 15B52 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. L'exposé sera centré sur la description des polytopes aléatoires qui sont construits comme enveloppes convexes d'un ensemble aléatoire de points. On s'intéressera plus particulièrement aux cas d'un nuage de points uniformes dans un corps convexe fixé ou d'un nuage de points gaussiens et on se focalisera sur l'étude asymptotique de grandeurs aléatoires associées, en particulier via des calculs de variances limites. Seront également évoqués d'autres modèles classiques de la géométrie aléatoire tels que la mosaïque de Poisson-Voronoi.[-]
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. ...[+]

60D05 ; 60F05 ; 52A22 ; 60G55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Les chaînes de Markov à mémoire de longueur variable constituent une classe de sources probabilistes. Il sera question dans cet exposé d'existence et unicité de mesure invariante pour une collection d'exemples de chaînes. Nous nous intéresserons également au comportement asymptotique d'une marche aléatoire dont les longueurs de sauts ne sont pas forcément intégrables. Les lois de sauts dépendent partiellement du passé de la trajectoire. Plus précisément, la probabilité de monter ou de descendre dépend du temps passé dans la direction dans laquelle le marcheur est en train d'avancer. Un critère de récurrence/transience s'exprimant en fonction des paramètres du modèle sera énoncé. Suivront plusieurs exemples illustrant le caractère instable du type de la marche lorsqu'on perturbe légèrement les paramètres.
Les travaux décrits dans cet exposé ont été faits en collaboration avec B. Chauvin, F. Paccaut et N. Pouyanne ou B. de Loynes, A. Le Ny et Y. Offret.[-]
Les chaînes de Markov à mémoire de longueur variable constituent une classe de sources probabilistes. Il sera question dans cet exposé d'existence et unicité de mesure invariante pour une collection d'exemples de chaînes. Nous nous intéresserons également au comportement asymptotique d'une marche aléatoire dont les longueurs de sauts ne sont pas forcément intégrables. Les lois de sauts dépendent partiellement du passé de la trajectoire. Plus ...[+]

60J10 ; 60J27 ; 60F05 ; 60K15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A functional limit theorem for the sine-process - Dymov, Andrey (Auteur de la conférence) | CIRM H

Multi angle

It is well-known that a large class of determinantal processes including the sine-process satisfies the Central Limit Theorem. For many dynamical systems satisfying the CLT the Donsker Invariance Principle also takes place. The latter states that, in some appropriate sense, trajectories of the system can be approximated by trajectories of the Brownian motion. I will present results of my joint work with A. Bufetov, where we prove a functional limit theorem for the sine-process, which turns out to be very different from the Donsker Invariance Principle. We show that the anti-derivative of our process can be approximated by the sum of a linear Gaussian process and small independent Gaussian fluctuations whose covariance matrix we compute explicitly.[-]
It is well-known that a large class of determinantal processes including the sine-process satisfies the Central Limit Theorem. For many dynamical systems satisfying the CLT the Donsker Invariance Principle also takes place. The latter states that, in some appropriate sense, trajectories of the system can be approximated by trajectories of the Brownian motion. I will present results of my joint work with A. Bufetov, where we prove a functional ...[+]

60G55 ; 60F05 ; 60G60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cancellations in random nodal sets - Peccati, Giovanni (Auteur de la conférence) | CIRM H

Multi angle

I will discuss second order results for the length of nodal sets and the number of phase singularities associated with Gaussian random Laplace eigenfunctions, both on compact manifolds (the flat torus) and on subset of the plane. I will mainly focus on 'cancellation phenomena' for nodal variances in the high-frequency limit, with specific emphasis on central and non-central second order results.

Based on joint works with F. Dalmao, D. Marinucci, I. Nourdin, M. Rossi and I. Wigman.[-]
I will discuss second order results for the length of nodal sets and the number of phase singularities associated with Gaussian random Laplace eigenfunctions, both on compact manifolds (the flat torus) and on subset of the plane. I will mainly focus on 'cancellation phenomena' for nodal variances in the high-frequency limit, with specific emphasis on central and non-central second order results.

Based on joint works with F. Dalmao, D. ...[+]

60G60 ; 60D05 ; 60B10 ; 58J50 ; 35P20 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Market delay and $G$-expectations - Dolinsky, Yan (Auteur de la conférence) | CIRM H

Multi angle

We study duality and asymptotic of super–replication with market delay. Our main result is the link between scaling limits of delayed markets and the $G$-expectation of Peng.

91G10 ; 91G20 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
​Assume that a renormalized Birkhoff sum $S_n f/B_n$ converges in distribution to a nontrivial limit. What can one say about the sequence $B_n$? Most natural statements in the literature involve sequences $B_n$ of the form $B_n = n^\alpha L(n)$, where $L$ is slowly varying. We will discuss the possible growth rate of $B_n$ both in the probability preserving case and the conservative case. In particular, we will describe examples where $B_n$ grows superpolynomially, or where $B_{n+1}/B_n$ does not tend to $1$.[-]
​Assume that a renormalized Birkhoff sum $S_n f/B_n$ converges in distribution to a nontrivial limit. What can one say about the sequence $B_n$? Most natural statements in the literature involve sequences $B_n$ of the form $B_n = n^\alpha L(n)$, where $L$ is slowly varying. We will discuss the possible growth rate of $B_n$ both in the probability preserving case and the conservative case. In particular, we will describe examples where $B_n$ ...[+]

37A40 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We present a convenient joint generalization of mixing and the local version of the central limit theorem (MLLT) for probability preserving dynamical systems. We verify that MLLT holds for several examples of hyperbolic systems by reviewing old results for maps and presenting new results for flows. Then we discuss applications such as proving various mixing properties of infinite measure preserving systems. Based on joint work with Dmitry Dolgopyat.[-]
We present a convenient joint generalization of mixing and the local version of the central limit theorem (MLLT) for probability preserving dynamical systems. We verify that MLLT holds for several examples of hyperbolic systems by reviewing old results for maps and presenting new results for flows. Then we discuss applications such as proving various mixing properties of infinite measure preserving systems. Based on joint work with Dmitry ...[+]

37A50 ; 37D50 ; 60F05 ; 37D20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Microscopic description of Coulomb gases - Serfaty, Sylvia (Auteur de la conférence) | CIRM H

Multi angle

We are interested in the statistical mechanics of systems of N points with Coulomb interactions in general dimension for a broad temperature range. We discuss local laws characterizing the rigidity of the system at the microscopic level, as well as free energy expansion and Central Limit Theorems for fluctuations.

82C22 ; 81V19 ; 60F05 ; 82D05

Sélection Signaler une erreur