En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 68Q25 18 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Matrices whose coefficients are univariate polynomials over a field are a basic mathematical object which arises at the core of fundamental algorithms in computer algebra: sparse or structured linear system solving, rational approximation or interpolation, division with remainder for bivariate polynomials, etc. After presenting this context, we will give an overview of recent progress on efficient computations with such matrices. Next, we will show how these results have been exploited to improve complexity bounds for a selection of problems which, interestingly, do not necessarily involve polynomial matrices a priori: computing the characteristic polynomial of a scalar matrix, performing modular composition of univariate polynomials, changing the monomial order for multivariate Gröbner bases.[-]
Matrices whose coefficients are univariate polynomials over a field are a basic mathematical object which arises at the core of fundamental algorithms in computer algebra: sparse or structured linear system solving, rational approximation or interpolation, division with remainder for bivariate polynomials, etc. After presenting this context, we will give an overview of recent progress on efficient computations with such matrices. Next, we will ...[+]

68W30 ; 68Q25 ; 15-04 ; 13P10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Matrices whose coefficients are univariate polynomials over a field are a basic mathematical object which arises at the core of fundamental algorithms in computer algebra: sparse or structured linear system solving, rational approximation or interpolation, division with remainder for bivariate polynomials, etc. After presenting this context, we will give an overview of recent progress on efficient computations with such matrices. Next, we will show how these results have been exploited to improve complexity bounds for a selection of problems which, interestingly, do not necessarily involve polynomial matrices a priori: computing the characteristic polynomial of a scalar matrix, performing modular composition of univariate polynomials, changing the monomial order for multivariate Gröbner bases.[-]
Matrices whose coefficients are univariate polynomials over a field are a basic mathematical object which arises at the core of fundamental algorithms in computer algebra: sparse or structured linear system solving, rational approximation or interpolation, division with remainder for bivariate polynomials, etc. After presenting this context, we will give an overview of recent progress on efficient computations with such matrices. Next, we will ...[+]

68W30 ; 68Q25 ; 15-04 ; 13P10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Algorithmes d'approximation - Partie 1 - Vivien, Frédéric (Auteur de la conférence) | CIRM H

Post-edited

De nombreux problèmes d'optimisation sont NP-complets. Nous ne connaissons pas de problème NP-complet qui admette un algorithme optimal de résolution s'exécutant en temps polynomial en la taille de l'instance (sinon P=NP serait établi), et l'intuition commune est que P =/= NP. Pour ces problèmes, la recherche de solutions optimales peut donc être prohibitive. Les algorithmes d'approximation offrent un compromis intéressant: par définition, ils s'exécutent en temps polynomial et fournissent des solutions dont la qualité est garantie. Nous introduirons la notion d'algorithme d'approximation et de schéma d'approximation en temps polynomial, et nous illustrerons ces notions sur de nombreux exemples. Nous montrerons également comment établir qu'un problème n'admet pas d'algorithme d'approximation (à moins que P=NP), ou comment établir une borne inférieure au facteur d'approximation de tout algorithme d'approximation (sauf si P=NP).[-]
De nombreux problèmes d'optimisation sont NP-complets. Nous ne connaissons pas de problème NP-complet qui admette un algorithme optimal de résolution s'exécutant en temps polynomial en la taille de l'instance (sinon P=NP serait établi), et l'intuition commune est que P =/= NP. Pour ces problèmes, la recherche de solutions optimales peut donc être prohibitive. Les algorithmes d'approximation offrent un compromis intéressant: par définition, ils ...[+]

68W25 ; 68Q25 ; 68T20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Algorithmes d'approximation - Partie 2 - Vivien, Frédéric (Auteur de la conférence) | CIRM H

Multi angle

Dans la deuxième partie de ce cours nous considérerons un problème lié, celui des algorithmes compétitifs. Dans le cadre de l'algorithmique « en-ligne », les caractéristiques d'une instance d'un problème ne sont découvertes qu'au fur et à mesure du traitement de l'instance (comme on ne découvre l'histoire d'un livre qu'au fur et à mesure où on en lit des pages). Ne pas connaître à l'avance toutes les caractéristiques d'une instance interdit souvent - mais pas toujours - de construire un algorithme optimal. Nous montrerons, entre autres, comment utiliser la technique de l'adversaire pour établir une borne inférieure au facteur de compétitivité de tout algorithme en-ligne (cette fois-ci en dehors de toute notion de complexité).[-]
Dans la deuxième partie de ce cours nous considérerons un problème lié, celui des algorithmes compétitifs. Dans le cadre de l'algorithmique « en-ligne », les caractéristiques d'une instance d'un problème ne sont découvertes qu'au fur et à mesure du traitement de l'instance (comme on ne découvre l'histoire d'un livre qu'au fur et à mesure où on en lit des pages). Ne pas connaître à l'avance toutes les caractéristiques d'une instance interdit ...[+]

68W25 ; 68Q25 ; 68T20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Le problème Graph Motif - Partie 1 - Fertin, Guillaume (Auteur de la conférence) | CIRM H

Post-edited

Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des réseaux biologiques, comme par exemple des réseaux d'interaction de protéines ou des réseaux métaboliques. Graph Motif a fait depuis l'objet d'une attention particulière qui se traduit par un nombre relativement élevé de publications, essentiellement orientées autour de sa complexité algorithmique.
Je présenterai un certain nombre de résultats algorithmiques concernant le problème Graph Motif, en particulier des résultats de FPT (Fixed-Parameter Tractability), ainsi que des bornes inférieures de complexité algorithmique.
Ceci m'amènera à détailler diverses techniques de preuves dont certaines sont plutôt originales, et qui seront je l'espère d'intérêt pour le public.[-]
Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des ...[+]

05C15 ; 05C85 ; 05C90 ; 68Q17 ; 68Q25 ; 68R10 ; 92C42 ; 92D20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Le problème Graph Motif - Partie 2 - Fertin, Guillaume (Auteur de la conférence) | CIRM H

Multi angle

Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des réseaux biologiques, comme par exemple des réseaux d'interaction de protéines ou des réseaux métaboliques. Graph Motif a fait depuis l'objet d'une attention particulière qui se traduit par un nombre relativement élevé de publications, essentiellement orientées autour de sa complexité algorithmique.
Je présenterai un certain nombre de résultats algorithmiques concernant le problème Graph Motif, en particulier des résultats de FPT (Fixed-Parameter Tractability), ainsi que des bornes inférieures de complexité algorithmique.
Ceci m'amènera à détailler diverses techniques de preuves dont certaines sont plutôt originales, et qui seront je l'espère d'intérêt pour le public.[-]
Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des ...[+]

05C15 ; 05C85 ; 05C90 ; 68Q17 ; 68Q25 ; 68R10 ; 92C42 ; 92D20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Restricted types of matchings - Rautenbach, Dieter (Auteur de la conférence) | CIRM H

Multi angle

We present new results concerning restricted types of matchings such as uniquely restricted matchings and acyclic matchings, and we also consider the corresponding edge coloring notions. Our focus lies on bounds, exact and approximative algorithms. Furthermore, we discuss some matching removal problems. The talk is based on joined work with J. Baste, C. Lima, L. Penso, I. Sau, U. Souza, and J. Szwarcfiter.

05C70 ; 05C35 ; 05C15 ; 05C85 ; 68Q25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

The partially disjoint paths problem - Schrijver, Alexander (Auteur de la conférence) | CIRM H

Post-edited

The partially disjoint paths problem asks for paths $P_1, \ldots,P_k$ between given pairs of terminals, while certain pairs of paths $P_i$,$P_j$ are required to be disjoint. With the help of combinatorial group theory, we show that, for fixed $k$, this problem can be solved in polynomial time for planar directed graphs. We also discuss related problems. No specific foreknowledge is required.

05C10 ; 05C20 ; 05C25 ; 05C38 ; 68Q25 ; 90C27

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Déléguer à une machine l'affectation des bacheliers dans le supérieur pose un certain nombre de questions : quels règles souhaite-t-on pour l'accès au supérieur ? Quels sont alors les objectifs assignés à la machine ? Quel algorithme permet de les atteindre ? Comment permettre à tous les citoyens de vérifier une exécution de l'algorithme ? On verra rapidement quels faux et vrais problèmes posait APB et pose Parcoursup. Je présenterai l'algorithme de Gale-Shapley et je montrerai comment on peut vérifier a posteriori que cet algorithme a été exécuté correctement, de façon plus ou moins complète selon le degré d'anonymat des candidatures et des classements.

In France, matching students who have passed the baccalaureat to higher education is a computer-based process. A new process is being used this year. Some questions arise: what are the rules that determine access to higher education? What goal is the computer-based process supposed to be aimed at? By what means? How are citizens allowed to check that the process runs smoothly and gives equitable results? This talk reviews some of the issues raised by both the former and the new processes, introduces the Gale-Shapley algorithm and explains how a run of the process can be independently verified.[-]
Déléguer à une machine l'affectation des bacheliers dans le supérieur pose un certain nombre de questions : quels règles souhaite-t-on pour l'accès au supérieur ? Quels sont alors les objectifs assignés à la machine ? Quel algorithme permet de les atteindre ? Comment permettre à tous les citoyens de vérifier une exécution de l'algorithme ? On verra rapidement quels faux et vrais problèmes posait APB et pose Parcoursup. Je présenterai l'...[+]

68Q25 ; 91B68 ; 05D15

Sélection Signaler une erreur