En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 92D25 27 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Consider two ancestral lineages sampled from a system of two-dimensional branching random walks with logistic regulation in the stationary regime. We study the asymptotics of their coalescence time for large initial separation and find that it agrees with well known results for a suitably scaled two-dimensional stepping stone model and also with Malécot's continuous-space approximation for the probability of identity by descent as a function of sampling distance.
This can be viewed as a justification for the replacement of locally fluctuating population sizes by fixed effective sizes. Our main tool is a joint regeneration construction for the spatial embeddings of the two ancestral lineages.[-]
Consider two ancestral lineages sampled from a system of two-dimensional branching random walks with logistic regulation in the stationary regime. We study the asymptotics of their coalescence time for large initial separation and find that it agrees with well known results for a suitably scaled two-dimensional stepping stone model and also with Malécot's continuous-space approximation for the probability of identity by descent as a function of ...[+]

60K35 ; 92D25 ; 92D10 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider a population model in which the season alternates between winter and summer, and individuals can acquire mutations either that are advantageous in the summer and disadvantageous in the winter, or vice versa. Also, we assume that individuals in the population can either be active or dormant, and that individuals can move between these two states. Dormant individuals do not reproduce but do not experience selective pressures. We show that, under certain conditions, over time we see two waves of adaptation. Some individuals repeatedly acquire mutations that are beneficial in the summer, while others repeatedly acquire mutations that are beneficial in the winter. Individuals can survive the season during which they are less fit by entering a dormant state. This result suggests that, for populations in fluctuating environments, dormancy may have the potential to induce speciation. This is joint work with Fernando Cordero and Adrian Gonzalez Casanova.[-]
We consider a population model in which the season alternates between winter and summer, and individuals can acquire mutations either that are advantageous in the summer and disadvantageous in the winter, or vice versa. Also, we assume that individuals in the population can either be active or dormant, and that individuals can move between these two states. Dormant individuals do not reproduce but do not experience selective pressures. We show ...[+]

92D25 ; 92D15 ; 60J85

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
L'écologie est une discipline quantitative dans laquelle les mathématiques sont présentes sous différentes formes depuis très longtemps. En conséquence, l'arrivée massive d'ordinateurs de plus en plus puissants dans les laboratoires dans les dernières décennies, a conduit à une explosion de la modélisation dans ce domaine, sous forme de calculs numériques mais également par l'analyse mathématique de modèles relativement simples. Cette croissance importante de l'activité de modélisation mathématique a été accompagnée par une augmentation de la complexité des modèles d'écologie qui tentent d'intégrer la plus grosse quantité de processus connus possible. Parallèlement, les moyens d'expérimentations et d'observation du milieu naturel n'ont pas cessé de s'améliorer, produisant ainsi des bases de données de plus en plus complètes dans la description du fonctionnement des écosystèmes. Paradoxalement, la formulation de base des processus utilisée dans les modèles complexes est toujours la même et fondée sur des expérimentations réalisées dans des conditions homogènes de laboratoire au cours du XXème siècle. Nous posons la question de l'intérêt d'une description adéquate d'un écosystème pour comprendre ses réponses à différentes perturbations. Une approche consiste à utiliser des formulations mécanistes des processus, c'est à dire des formulations fondées sur des détails expliquant la cause de la réalisation des processus, plutôt que des formulations empiriques acquises dans des conditions différentes du milieu dans lequel on les applique. Cette prise en compte des mécanismes induit encore un surcroit de complexité. Les mathématiques fournissent un ensemble d'idées et de méthodes permettant tout d'abord de produire des formulations adaptées à la prise en compte des mécanismes et également d'aborder cette complexité des modèles écosystémiques, voire dans certains cas de la réduire. Nous illustrerons cette démarche à travers des exemples d'applications variés.[-]
L'écologie est une discipline quantitative dans laquelle les mathématiques sont présentes sous différentes formes depuis très longtemps. En conséquence, l'arrivée massive d'ordinateurs de plus en plus puissants dans les laboratoires dans les dernières décennies, a conduit à une explosion de la modélisation dans ce domaine, sous forme de calculs numériques mais également par l'analyse mathématique de modèles relativement simples. Cette croissance ...[+]

34E13 ; 34E15 ; 34E20 ; 92D25 ; 92D40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Energy investment into maturation encompasses any expenses linked to tissue differentiation, i.e. re-organization of body structure during development. This is different from growth which can be conceptualized as synthesis of more of the same. Energy invested into growth is fixed into the biomass of the organism (with some overheads), but energy invested in maturation is oxidized as metabolic work making it more difficult to quantify in practice. Nonetheless it can be quantified and it can even represent a substantial part of the energy budget of living organisms. In this talk I will give an overview of different studies where investment in maturity was quantified. The focus will be on 4 different types of organisms: cnidarians, ctenophores, teleost fish and frogs. I will further discuss what type of eco-physiological effects might be expected when an organism modifies its investment into these processes. Some intriguing literature studies will be presented which can be re-interpreted in perhaps unexpected ways when investment into maturation is taken into account. This raises the question of just how important and how flexible such costs might actually be. Maturity can be used as a quantifier for internal time. Seven criteria were proposed which should be respected by any such metric: (1) independent of morphology, (2) independent of body size, (3) depend on one a priori homologous event, (4) unaffected by changes in temperature, (5) similar between closely related species, (6) increase with clock time, and (7) physically quantifiable (Reiss 1989). We showed that the maturity concept of Dynamic Energy Budget theory complies with all those criteria and on the basis of this information and the studies presented above I will finish by discussing the potential role of maturity in shaping metabolic flexibility.[-]
Energy investment into maturation encompasses any expenses linked to tissue differentiation, i.e. re-organization of body structure during development. This is different from growth which can be conceptualized as synthesis of more of the same. Energy invested into growth is fixed into the biomass of the organism (with some overheads), but energy invested in maturation is oxidized as metabolic work making it more difficult to quantify in ...[+]

92D25 ; 92D40 ; 92C30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Oxygen is essential for burning food and generate energy, but may become limiting for aquatic organisms that rely on gas exchange under water. This is because breathing under water is challenging: the diffusion of oxygen is orders of magnitude lower in water than in air, while the higher density and viscosity of water greatly enhance the cost of breathing. Given that oxygen may be also be a limiting resource, respiration physiology may be relevant to understand energy budgets in aquatic ectotherms.
Traditionally, respiration physiology has focused on the benefits of extracting sufficient amounts of oxygen and thus prevent asphyxiation. However, breathing oxygen is intrinsically dangerous: while a shortage of oxygen quickly leads to asphyxiation, too much oxygen is toxic. Therefore, the ability to regulate oxygen consumption rates (i.e. respiratory control) is at a premium; good respiratory control will enable ectotherms to balance oxygen toxicity against the risk of asphyxiation across a wide range of temperatures.
In this presentation I will focus on the effects of body size and temperature on this balancing act with regard to oxygen uptake and consumption. Body size is intimately tied to oxygen budgets and hence energy budgets through size related changes in oxygen requirements and respiratory surfaces. Furthermore, a larger body size may represent a respiratory advantage that helps to overcome viscosity. Given that viscous forces are larger in cold water, this respiratory advantage represents a novel explanation for the pattern of larger body sizes in cold water, with polar gigantism as the extreme manifestation.
Temperature is also intimately tied to oxygen budgets and hence energy budgets through thermal controls on metabolism and temperature related changes in the availability of dissolved oxygen (notably diffusivity, viscosity and solubility). Thus, differences in temperatures may act more strongly on ectotherms that rely on aquatic rather than on aerial gas exchange. Comparing four different insect orders, I demonstrate that thermal tolerance is indeed affected more by the prevalent oxygen conditions in species with poor respiration control. In conclusion, the ability to regulate gas exchange (i.e. respiratory control) is thus a key attribute of species that helps to explain thermal responses from an oxygen perspective.[-]
Oxygen is essential for burning food and generate energy, but may become limiting for aquatic organisms that rely on gas exchange under water. This is because breathing under water is challenging: the diffusion of oxygen is orders of magnitude lower in water than in air, while the higher density and viscosity of water greatly enhance the cost of breathing. Given that oxygen may be also be a limiting resource, respiration physiology may be ...[+]

92D25 ; 92D50 ; 92C15 ; 92C30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

A non exchangeable coalescent arising in phylogenetics - Lambert, Amaury (Auteur de la conférence) | CIRM H

Post-edited

A popular line of research in evolutionary biology is to use time-calibrated phylogenies in order to infer the underlying diversification process. This involves the use of stochastic models of ultrametric trees, i.e., trees whose tips lie at the same distance from the root. We recast some well-known models of ultrametric trees (infinite regular trees, exchangeable coalescents, coalescent point processes) in the framework of so-called comb metric spaces and give some applications of coalescent point processes to the phylogeny of bird species.

However, these models of diversification assume that species are exchangeable particles, and this always leads to the same (Yule) tree shape in distribution. Here, we propose a non-exchangeable, individual-based, point mutation model of diversification, where interspecific pairwise competition is only felt from the part of individuals belonging to younger species. As the initial (meta)population size grows to infinity, the properly rescaled dynamics of species lineages converge to a one-parameter family of coalescent trees interpolating between the caterpillar tree and the Kingman coalescent.

Keywords: ultrametric tree, inference, phylogenetic tree, phylogeny, birth-death process, population dynamics, evolution[-]
A popular line of research in evolutionary biology is to use time-calibrated phylogenies in order to infer the underlying diversification process. This involves the use of stochastic models of ultrametric trees, i.e., trees whose tips lie at the same distance from the root. We recast some well-known models of ultrametric trees (infinite regular trees, exchangeable coalescents, coalescent point processes) in the framework of so-called comb metric ...[+]

60J80 ; 60J85 ; 92D15 ; 92D25 ; 54E45 ; 54E70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Horizontal transfer of information is recognized as a major process in the evolution and adaptation of population, especially micro-organisms. There is a large literature but the previous models are either based on epidemiological models or population genetics stochastic models with constant population size. We propose a general stochastic eco-evolutionary model of population dynamics with horizontal and vertical transfers, inspired by the transfer of plasmids in bacteria. The transfer rates are either density-dependent (DD) or frequency-dependent (FD) or of Michaelis-Menten form (MM). Our model allows eco-evolutionary feedbacks. In the first part we present a two-traits (alleles or kinds of plasmids, etc.) model with horizontal transfer without mutation and study a large population limit. It's a ODEs system. We show that the phase diagrams are different in the (DD), (FD) and (MM) cases. We interpret the results for the impact of horizontal transfer on the maintenance of polymorphism and the invasion or elimination of pathogens strains. We also propose a diffusive approximation of adaptation with transfer. In a second part, we study the impact of the horizontal transfer on the evolution. We explain why it can drastically affect the evolutionary outcomes. Joint work with S. Billiard,P. Collet, R. Ferrière, C.V. Tran.[-]
Horizontal transfer of information is recognized as a major process in the evolution and adaptation of population, especially micro-organisms. There is a large literature but the previous models are either based on epidemiological models or population genetics stochastic models with constant population size. We propose a general stochastic eco-evolutionary model of population dynamics with horizontal and vertical transfers, inspired by the ...[+]

60J75 ; 60J80 ; 92D25 ; 92D15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur