En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14N15 7 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Quadratic enumerative geometry extends classical enumerative geometry. In this enriched setting, the answers to enumerative questions are classes of quadratic forms and live in the Grothendieck-Witt ring GW(k) of quadratic forms. In the talk, we will compute some quadratic enumerative invariants (this can be done, for example, using Marc Levine's localization methods), for example, the quadratic count of lines on a smooth cubic surface.
We will then study the geometric significance of this count: Each line on a smooth cubic surface contributes an element of GW(k) to the total quadratic count. We recall a geometric interpretation of this contribution by Kass-Wickelgren, which is intrinsic to the line and generalizes Segre's classification of real lines on a smooth cubic surface. Finally, we explain how to generalize this to lines of hypersurfaces of degree 2n − 1 in Pn+1. The latter is a joint work with Felipe Espreafico and Stephen McKean.[-]
Quadratic enumerative geometry extends classical enumerative geometry. In this enriched setting, the answers to enumerative questions are classes of quadratic forms and live in the Grothendieck-Witt ring GW(k) of quadratic forms. In the talk, we will compute some quadratic enumerative invariants (this can be done, for example, using Marc Levine's localization methods), for example, the quadratic count of lines on a smooth cubic surface.
We will ...[+]

14N15 ; 14F42 ; 14G27

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Curve neighbourhoods for odd symplectic Grassmannians - Pech, Clélia (Auteur de la conférence) | CIRM H

Virtualconference

Odd symplectic Grassmannians are a family of quasi-homogeneous varieties with properties nevertheless similar to those of homogeneous spaces, such as the existence of a Schubert-type cohomology basis. In this talk based on joint work with Ryan Shifler, I will explain how to construct their curve neighbourhoods. Curve neighbourhoods were first introduced by Buch, Chaput, Mihalcea and Perrin in the homogeneous setting: it is the union of all rational curves of fixed degree passing through a given Schubert variety. Potential applications include the computation of minimal degrees in quantum cohomology.[-]
Odd symplectic Grassmannians are a family of quasi-homogeneous varieties with properties nevertheless similar to those of homogeneous spaces, such as the existence of a Schubert-type cohomology basis. In this talk based on joint work with Ryan Shifler, I will explain how to construct their curve neighbourhoods. Curve neighbourhoods were first introduced by Buch, Chaput, Mihalcea and Perrin in the homogeneous setting: it is the union of all ...[+]

14N35 ; 14N15 ; 14M15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random algebraic geometry - lecture 1 - Lerario, Antonio (Auteur de la conférence) | CIRM H

Multi angle

In the last years there has been an increasing interest into the statistical behaviour of algebraic sets over non-algebraically closed fields: when the notion of 'generic' is no longer available, one seeks for a 'random' study of the objects of interest. In this course, divided into four lectures, I will present the major ideas in the subject (lecture notes will be made available):

1. Generic and random. In the first lecture I will discuss how to switch from the notion of generic, from classical algebraic geometry, to the notion of random. Of course, this depends on the choice of the probability distribution on the 'moduli space' of the objects of interest. I will discuss what are the reasonable choices in the case $\mathbb{K}=\mathbb{C}$ (where still these questions make sense, and 'random' and 'generic' are synonymous) and in the case $\mathbb{K}=\mathbb{R}$ (where spherical harmonics play a crucial role).[-]
In the last years there has been an increasing interest into the statistical behaviour of algebraic sets over non-algebraically closed fields: when the notion of 'generic' is no longer available, one seeks for a 'random' study of the objects of interest. In this course, divided into four lectures, I will present the major ideas in the subject (lecture notes will be made available):

1. Generic and random. In the first lecture I will discuss how ...[+]

14P05 ; 14P25 ; 52A22 ; 14N15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Real lines on del Pezzo surface and beyond - Kharlamov, Viatcheslav (Auteur de la conférence) | CIRM H

Multi angle

After a reminder of a surgery invariant counting of real lines on real del Pezzo surfaces, I will discuss how it can be extended to counting of curvesof any anti-canonical degree.

14N10 ; 14P25 ; 14J26 ; 14N15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random algebraic geometry - lecture 2 - Lerario, Antonio (Auteur de la conférence) | CIRM H

Multi angle

2. Degree and volume. In the second lecture I will try to explain to what extent the right notion of degree, in the probabilistic context, is the notion of volume. I will introduce the classical kinematic formula, over $\mathbb{R}$ and over $\mathbb{C}$, and explain the role of the Veronese variety in this context. In the complex case I will connect to the Bernstein-Khovanskii-Kouchnirenko Theorem.

14P05 ; 14P25 ; 52A22 ; 14N15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random algebraic geometry - lecture 3 - Lerario, Antonio (Auteur de la conférence) | CIRM H

Multi angle

3. The square-root law and the topology of random hypersurfaces. In the third lecture I will focus on the case $\mathbb{K}=\mathbb{R}$ and explain in which sense random real algebraic geometry behaves as the 'square root' of complex algebraic geometry. I will discuss a probabilistic version of Hilbert's Sixteenth Problem, following the work of Gayet & Welschinger (introducing a local random version of Nash and Tognoli's Theorem and of Morse theory for the study of Betti numbers of random hypersurfaces) and of Diatta $\&$ Lerario (showing that 'most' hypersurfaces of degree $d$ are isotopic to hypersurfaces of degree $\sqrt{d \log d}$ ).[-]
3. The square-root law and the topology of random hypersurfaces. In the third lecture I will focus on the case $\mathbb{K}=\mathbb{R}$ and explain in which sense random real algebraic geometry behaves as the 'square root' of complex algebraic geometry. I will discuss a probabilistic version of Hilbert's Sixteenth Problem, following the work of Gayet & Welschinger (introducing a local random version of Nash and Tognoli's Theorem and of Morse ...[+]

14P05 ; 14P25 ; 52A22 ; 14N15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random algebraic geometry - lecture 4 - Lerario, Antonio (Auteur de la conférence) | CIRM H

Multi angle

4. The zonoid ring and the nonarchimedean world. In the last lecture I will explain a ring-theoretical interpretation of the computations in random algebraic geometry, using a recently discovered ring structure on special convex bodies. This leads to the construction of a probabilistic version of Schubert calculus. In the final part of the lecture I will export some of the ideas from the previous lectures to the case $\mathbb{K}=\mathbb{Q}_{p}$, leaving with some open questions.[-]
4. The zonoid ring and the nonarchimedean world. In the last lecture I will explain a ring-theoretical interpretation of the computations in random algebraic geometry, using a recently discovered ring structure on special convex bodies. This leads to the construction of a probabilistic version of Schubert calculus. In the final part of the lecture I will export some of the ideas from the previous lectures to the case $\mathbb{K}=\mathbb{Q}_{p}$, ...[+]

14P05 ; 14P25 ; 52A22 ; 14N15

Sélection Signaler une erreur